2021-2022学年山西省运城市西街中学高二数学理联考试卷含解析_第1页
2021-2022学年山西省运城市西街中学高二数学理联考试卷含解析_第2页
2021-2022学年山西省运城市西街中学高二数学理联考试卷含解析_第3页
2021-2022学年山西省运城市西街中学高二数学理联考试卷含解析_第4页
2021-2022学年山西省运城市西街中学高二数学理联考试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年山西省运城市西街中学高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知向量=(1,5,﹣2),=(3,1,2),=(x,﹣3,6).若DE∥平面ABC,则x的值是()A.5 B.3 C.2 D.﹣1参考答案:A【考点】共线向量与共面向量.【分析】设平面ABC的法向量为=(x,y,z),则,由DE∥平面ABC,可得=0,解出即可得出.【解答】解:∵设平面ABC的法向量为=(x,y,z),则,即,取=(6,﹣4,﹣7).∵DE∥平面ABC,∴=6x﹣3×(﹣4)+6×(﹣7)=0,解得x=5.故选:A.【点评】本题考查了向量垂直与数量积的关系、线面平行的性质、法向量的应用,考查了推理能力与计算能力,属于中档题.2.在△ABC中,若,则AC=()A.

B.

C.

D.参考答案:B3.设a、b是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是()A.若a∥b,a∥α,则b∥α

B.若α⊥β,a∥α,则a⊥βC.若α⊥β,a⊥β,则a∥α

D.若a⊥b,a⊥α,b⊥β,则α⊥β参考答案:D略4.正数x、y满足x+2y=1,则xy的最大值为()A. B. C.1 D.参考答案:A【考点】基本不等式在最值问题中的应用.【分析】总经理于基本不等式求解表达式的最值即可.【解答】解:xy=x?2y≤=,当且仅当x=,时取等号.故选:A.5.有4个命题:(1)没有男生爱踢足球;(2)所有男生都不爱踢足球;(3)至少有一个男生不爱踢足球;(4)所有女生都爱踢足球;其中是命题“所有男生都爱踢足球”的否定是

A.(1)

B.(2)

C.(3)

D.(4)参考答案:C略6.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为(

)A.

B.

C.

D..参考答案:D略7.已知函数若有则的取值范围为A.

B.

C.

D.参考答案:B略8.下列说法中错误的是(

)A.先把高二年级的2000名学生编号为1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为,然后抽取编号为,,的学生,这样的抽样方法是系统抽样法B.线性回归直线一定过样本中心点C.若两个随机变量的线性相关性越强,则相关系数的值越接近于1D.若一组数据1、a、3的平均数是2,则该组数据的方差是参考答案:C对于A,根据抽样方法特征是数据多,抽样间隔相等,是系统抽样,A正确;对于B,线性回归直线一定过样本中心点,B正确;对于C,两个随机变量的线性相关性越强,则相关系数|r|的值越接近于1,C错误;对于D,一组数据1、a、3的平均数是2,∴a=2;∴该组数据的方差是s2=×[(1﹣2)2+(2﹣2)2+(3﹣2)2]=,D正确.故选:C

9.已知为非零实数,且,则下列不等式中恒成立的序号是()①;②;③;④;⑤A.①⑤

B.②④

C.③④

D.③⑤

参考答案:D略10.三棱锥的主视图和俯视图为如图所示的两个全等的等腰三角形,其中底边长为,腰长为,则该三棱锥左视图的面积为(

)A.

B.

C.

D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.已知复数,且,则的最大值为

.参考答案:

12.已知函数图象上一点P(2,f(2))处的切线方程为,求a,b的值。

参考答案:解:,所以,解得13.曲线+=1(9<k<25)的焦距为.参考答案:8考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:确定曲线+=1(9<k<25)表示双曲线,且a2=25﹣k,b2=k﹣9,利用c2=a2+b2,可得曲线+=1(9<k<25)的焦距.解答:解:∵9<k<25∴25﹣k>0,9﹣k<0,∴曲线+=1(9<k<25)表示双曲线,且a2=25﹣k,b2=k﹣9,∴c2=a2+b2=16,∴c=4,∴曲线+=1(9<k<25)的焦距为2c=8,故答案为:8.点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.14.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.参考答案:216000【考点】简单线性规划的应用.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.15.复数的值是

.参考答案:0【考点】复数代数形式的混合运算.【专题】计算题.【分析】先利用两个复数的除法法则求出,再由虚数单位i的幂运算性质求出i3的值,从而可求所求式子的值.【解答】解:复数=﹣i=﹣i=0.故答案为0.【点评】本题考查两个复数乘除法的运算法则的应用,以及虚数单位i的幂运算性质的应用.16.两等差数列{an}和{bn},前n项和分别为Sn,Tn,且,则等于.参考答案:【考点】8F:等差数列的性质.【分析】利用==,即可得出结论.【解答】解:====.故答案为:.17.已知抛物线的顶点在原点,对称轴是轴,焦点在直线上,则该抛物线的方程为__________;参考答案:或三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知方程x2+y2﹣2x﹣4y+m=0.(1)若此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线x+2y﹣4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;(3)在(2)的条件下,求以MN为直径的圆的方程.参考答案:【考点】直线和圆的方程的应用;二元二次方程表示圆的条件.【专题】直线与圆.【分析】(1)圆的方程化为标准方程,利用半径大于0,可得m的取值范围;(2)直线方程与圆方程联立,利用韦达定理及OM⊥ON,建立方程,可求m的值;(3)写出以MN为直径的圆的方程,代入条件可得结论.【解答】解:(1)(x﹣1)2+(y﹣2)2=5﹣m,∴方程表示圆时,m<5;(2)设M(x1,y1),N(x2,y2),则x1=4﹣2y1,x2=4﹣2y2,得x1x2=16﹣8(y1+y2)+4y1y2,∵OM⊥ON,∴x1x2+y1y2=0,∴16﹣8(y1+y2)+5y1y2=0①,由,得5y2﹣16y+m+8=0,∴,.代入①得.(3)以MN为直径的圆的方程为(x﹣x1)(x﹣x2)+(y﹣y1)(y﹣y2)=0,即x2+y2﹣(x1+x2)x﹣(y1+y2)y=0,∴所求圆的方程为.【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.19.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,且PA=PD=DA=2,∠BAD=60° (I)求证:PB⊥AD; (II)若PB=,求二面角A﹣PD﹣C的余弦值. 参考答案:【考点】二面角的平面角及求法;直线与平面垂直的性质. 【专题】空间位置关系与距离;空间角. 【分析】(Ⅰ)证明:取AD的中点E,连接PE,BE,BD.证明AD⊥平面PBE,然后证明PB⊥AD; (Ⅱ)以点E为坐标原点,分别以EA,EB,EP所在直线为x,y,z轴,建立如图所示空间直角坐标系,求出平面APD的一个法向量为=(0,1,0),平面PDC的一个法向量为,利用向量的数量积求解二面角A﹣PD﹣C的余弦值. 【解答】(Ⅰ)证明:取AD的中点E,连接PE,BE,BD. ∵PA=PD=DA,四边形ABCD为菱形,且∠BAD=60°, ∴△PAD和△ABD为两个全等的等边三角形, 则PE⊥AD,BE⊥AD,∴AD⊥平面PBE,…(3分) 又PB?平面PBE,∴PB⊥AD;…(5分) (Ⅱ)解:在△PBE中,由已知得,PE=BE=,PB=,则PB2=PE2+BE2, ∴∠PEB=90°,即PE⊥BE,又PE⊥AD,∴PE⊥平面ABCD; 以点E为坐标原点,分别以EA,EB,EP所在直线为x,y,z轴,建立如图所示空间直角坐标系, 则E(0,0,0),C(﹣2,,0),D(﹣1,0,0),P(0,0,), 则=(1,0,),=(﹣1,,0), 由题意可设平面APD的一个法向量为=(0,1,0);…(7分) 设平面PDC的一个法向量为=(x,y,z), 由得:, 令y=1,则x=,z=﹣1,∴=(,1,﹣1); 则=1,∴cos<>===,…(11分) 由题意知二面角A﹣PD﹣C的平面角为钝角, 所以,二面角A﹣PD﹣C的余弦值为﹣…(12分) 【点评】本题考查直线与平面垂直,二面角的平面角的求法,考查逻辑推理以及计算能力.20.已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求m的取值范围.参考答案:(1);(2)【分析】(1)通过讨论的范围,去掉绝对值,解关于各个区间上的不等式的解集,取并集即可;(2)求出的最大值,问题转化为,从而求出的取值范围.【详解】(1)当时,,①当时,,解得;②当时,,解得;③当时,,解得;综上可知,原不等式的解集为.(2)由题意可知在上恒成立,当时,,从而可得,即,,且,,因此.本题主要考查了绝对值不等式问题,对于含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.21.用秦九韶算法求多项式当时的值。参考答案:解析:

22.已知椭圆+=1和点P(4,2),直线l经过点P且与椭圆交于A、B两点.(1)当直线l的斜率为时,求线段AB的长度;(2)当P点恰好为线段AB的中点时,求l的方程.

参考答案:(1)由已知可得直线l的方程为y-2=(x-4),即y=x.由可得x2-18=0,若设A(x1,y1),B(x2,y2).则x1+x2=0,x1x2=-18.于是|AB|====.所以线段AB的长度为.(2)法一:设l的斜率为k,则其方程为y-2=k(x-4).联立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论