版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
附录2:外文原文,译文ModulatingDirectDigitalSynthesizerInthepursuitofmorecomplexphasecontinuousmodulationtechniques,thecontroloftheoutputwaveformbecomesincreasinglymoredifficultwithanalogcircuitry.Inthesedesigns,usinganon-lineardigitaldesigneliminatestheneedforcircuitboardadjustmentsoveryieldandtemperature.AdigitaldesignthatmeetsthesegoalsisaDirectDigitalSynthesizerDDS.ADDSsystemsimplytakesaconstantreferenceclockinputanddividesitdownatoaspecifiedoutputfrequencydigitallyquantizedorsampledatthereferenceclockfrequency.ThisformoffrequencycontrolmakesDDSsystemsidealforsystemsthatrequireprecisefrequencysweepssuchasradarchirpsorfastfrequencyhoppers.Withcontrolofthefrequencyoutputderivedfromthedigitalinputword,DDSsystemscanbeusedasaPLLallowingprecisefrequencychangesphasecontinuously.Aswillbeshown,DDSsystemscanalsobedesignedtocontrolthephaseoftheoutputcarrierusingadigitalphasewordinput.Withdigitalcontroloverthecarrierphase,ahighspectraldensityphasemodulatedcarriercaneasilybegenerated.ThisarticleisintendedtogivethereaderabasicunderstandingofaDDSdesign,andanunderstandingofthespuriousoutputresponse.Thisarticlewillalsopresentasampledesignrunningat45MHzinahighspeedfieldprogrammablegatearrayfromQuickLogic.AbasicDDSsystemconsistsofanumericallycontrolledoscillator(NCO)usedtogeneratetheoutputcarrierwave,andadigitaltoanalogconverter(DAC)usedtotakethedigitalsinusoidalwordfromtheNCOandgenerateasampledanalogcarrier.SincetheDACoutputissampledatthereferenceclockfrequency,awaveformsmoothinglowpassfilteristypicallyusedtoeliminatealiascomponents.Figure1isabasicblockdiagramofatypicalDDSsystemdesign.ThegenerationoftheoutputcarrierfromthereferencesampleclockinputisperformedbytheNCO.ThebasiccomponentsoftheNCOareaphaseaccumulatorandasinusoidalROMlookuptable.AnoptionalphasemodulatorcanalsobeincludeintheNCOdesign.ThisphasemodulatorwilladdphaseoffsettotheoutputofthephaseaccumulatorjustbeforetheROMlookuptable.ThiswillenhancetheDDSsystemdesignbyaddingthecapabilitiestophasemodulatethecarrieroutputoftheNCO.Figure2isadetailedblockdiagramofatypicalNCOdesignshowingtheoptionalphasemodulator.FIGURE1:TypicalDDSSystem.FIGURE2:TypicalNCODesign.TobetterunderstandthefunctionsoftheNCOdesign,firstconsiderthebasicNCOdesignwhichincludesonlyaphaseaccumulatorandasinusoidalROMlookuptable.ThefunctionofthesetwoblocksoftheNCOdesignarebestunderstoodwhencomparedtothegraphicalrepresentationofEuler’sformulaejwt=cos(wt)+jsin(wt).ThegraphicalrepresentationofEuler’sformula,asshowninFigure3,isaunitvectorrotatingaroundthecenteraxisoftherealandimaginaryplaneatavelocityofwrad/s.Plottingtheimaginarycomponentversustimeprojectsasinewavewhileplottingtherealcomponentversustimeprojectsacosinewave.ThephaseaccumulatoroftheNCOisanalogous,orcouldbeconsidered,thegeneratoroftheangularvelocitycomponentwrad/s.Thephaseaccumulatorisloaded,synchronoustothereferencesampleclock,withanNbitfrequencyword.ThisfrequencywordiscontinuouslyaccumulatedwiththelastsampledphasevaluebyanNbitadder.TheoutputoftheadderissampledatthereferencesampleclockbyanNbitregister.WhentheaccumulatorreachestheNbitmaximumvalue,theaccumulatorrollsoverandcontinues.PlottingthesampledaccumulatorvaluesversustimeproducesasawtoothwaveformasshownbelowinFigure3.FIGURE3Euler’sEquationRepresentedGraphicallyThesampledoutputofthephaseaccumulatoristhenusedtoaddressaROMlookuptableofsinusoidalmagnitudevalues.Thisconversionofthesampledphasetoasinusoidalmagnitudeisanalogoustotheprojectionoftherealorimaginarycomponentintime.Sincethenumberofbitsusedbythephaseaccumulatordeterminesthegranularityofthefrequencyadjustmentsteps,atypicalphaseaccumulatorsizeis24to32bits.SincethesizeofthesinusoidalROMtableisdirectlyproportionaltotheaddressingrange,notall24or32bitsofthephaseaccumulatorareusedtoaddresstheROMsinusoidaltable.OnlytheupperYbitsofthephaseaccumulatorareusedtoaddressthesinusoidalROMtable,whereY<NbitsandYistypicallybutnotnecessarilyequaltoD,andDisthenumberofoutputmagnitudebitsfromthesinusoidalROMtable.SinceanNCOoutputsacarrierbasedonadigitalrepresentationofthephaseandmagnitudeofthesinusoidalwaveform,designershavecompletecontroloverfrequency,phase,andevenamplitudeoftheoutputcarrier.ByaddingaphaseportandaphaseaddertothebasicNCOdesign,theoutputcarrieroftheNCOcanbeMarrayphasemodulatedwhereMequalsthenumberofphaseportbitsandwhereMislessthanorequaltotheYnumberofbitsusedtoaddressthesinusoidalROMtable.ForsystemdesignsthatrequireamplitudemodulationsuchasQAM,amagnitudeportcanbeaddedtoadjustthesinusoidalROMtableoutput.NotethatthisportisnotshowninFigure2andthatthisfeatureisnotdemonstratedinthesampleQuickLogicFPGAdesign.Finally,frequencymodulationisagivenwiththebasicNCOdesign.Thefrequencyportcandirectlyadjustthecarrieroutputfrequency.SincefrequencywordsareloadedintotheDDSsynchronoustothesampleclock,frequencychangesarephasecontinuous.AlthoughDDSsystemsgivethedesignercompletecontrolofcomplexmodulationsynthesis,therepresentationofsinusoidalphaseandmagnitudeinanon-lineardigitalformatintroducesnewdesigncomplexities.Insamplinganycontinuous-timesignal,onemustconsiderthesamplingtheoryandquantizationerror.TounderstandtheeffectsofthesamplingtheoryonaDDSsystem,itisbesttolookattheDDSsynthesisprocessesinboththetimeandfrequencydomain.Asstatedabove,theNCOgeneratesasinusoidalwaveformbyaccumulatingthephaseataspecifiedrateandthenusesthephasevaluetoaddressaROMtableofsinusoidalamplitudevalues.Thus,theNCOisessentiallytakingasinusoidalwaveformandsamplingitwiththerisingorfallingedgeoftheNCOinputreferencesamplingclock.Figure4showsthetimeandfrequencydomainoftheNCOprocessing.Notethatthisrepresentationdoesnotassumequantization.Basedontheloadedfrequencyword,theNCOproducesasetofamplitudeoutputvaluesatasetperiod.Thefrequencydomainrepresentationofthissinusoidisanimpulsefunctionatthespecifiedfrequency.TheNCO,however,outputsdiscretedigitalsamplesofthissinusoidattheNCOreferenceclockrate.Inthetimedomain,theNCOoutputisafunctionofthesamplingclockedgestrobesmultipliedbythesinusoidwaveformproducingatrainofimpulsesatthesinusoidamplitude.Inthefrequencydomain,thesamplingstrobesofthereferenceclockproduceatrainofimpulsesatfrequenciesofKtimestheNCOclockfrequencywhereK=...-1,0,1,2....Sincethesamplingclockwasmultipliedbythesinusoidinthetimedomain,thefrequencydomaincomponentsofthesinusoidandthesamplingclockneedtobeconvolvedtoproducethefrequencydomainrepresentationoftheNCOoutput.ThefrequencydomainresultsaretheimpulsefunctionatthefundamentalfrequencyofthesinusoidandthealiasimpulsefunctionsoccurringatKtimestheNCOclockfrequencyplusorminusthefundamentalfrequency.Thefundamentalandaliascomponentoccurat:K*Fclk-FoutK*Fclk+FoutWhereK=...-1,0,1,2.....andK=0istheNCOsinusoidfundamentalfrequencyFoutisthespecifiedNCOsinusoidoutputfrequencyFclkistheNCOreferenceclockfrequencyFIGURE4NCOOutputRepresentationTimeandFrequencyDomainTheDACoftheDDSsystemtakestheNCOoutputvaluesandtranslatesthesevaluesintoanalogvoltages.Figure4showsthetimeandfrequencydomainrepresentationsoftheDACprocessingstartingwiththeNCOoutput.TheDACoutputisasampleandholdcircuitthattakestheNCOdigitalamplitudewordsandconvertsthevalueintoananalogvoltageandholdsthevalueforonesampleclockperiod.ThetimedomainplotoftheDACprocessingistheconvolutionoftheNCOsampledoutputvalueswithapulseofonesampleclockperiod.Thefrequencydomainplotofthesamplingpulseisasin(x)/xfunctionwiththefirstnullatthesampleclockfrequency.Sincethetimedomainwasconvolved,thefrequencydomainismultiplied.ThismultiplicationdampenstheNCOoutputwiththesin(x)/xenvelope.ThisattenuationattheDACoutputcanbecalculatedasfollowsandasampleoutputspectrumisshowninFigure5:Atten(F)=20log[(sin(pF/Fclk)/pF/Fclk)]WhereFistheoutputfrequencyFclkisthesampleclockfrequencyFIGURE5:DACOutputRepresentationinTimeandFrequencyDomainAsidefromthesamplingtheory,thequantizationoftherealvaluesintodigitalformmustalsobeconsideredintheperformanceanalysisofaDDSsystem.ThespuriousresponseofaDDSsystemisprimarilydictatedbytwoquantizationparameters.TheseparametersarethephasequantizationbythephaseaccumulatorandthemagnitudequantizationbytheROMsinusoidaltableandtheDAC.Asmentionedabove,onlytheupperYbitsofthephaseaccumulatorareusedtoaddresstheROMlookuptable.Itshouldbenoted,however,thatusingonlytheupperYbitsofthephaseaccumulatorintroducesaphasetruncation.Whenafrequencywordcontaininganon-zerovalueinthelower(N-Y-1:0)bitsisloadedintotheDDSsystem,thelowernon-zerobitswillaccumulatetotheupperYbitsandcauseaphasetruncation.Thefrequencyatwhichthephasetruncationoccurscanbecalculatedbythefollowing:Ftrunc=FW(N-Y-1:0)/2N-Y*Fclk.Aphasetruncationwillperiodically(attheFtruncrate)phasemodulatetheoutputcarrierforward2p/28tocompensateforfrequencywordgranularitygreaterthan2Y.Thephasejumpcausedbytheaccumulationofphasetruncatedbitsproducesspursaroundthefundamental.Thesespursarelocatedplusandminusthetruncationfrequencyfromthefundamentalfrequencyandthemagnitudeofthespurswillbe-20log(2Y)dBc.AsampleoutputofaphasetruncationspurisshowninFigure5.InatypicalNCOdesign,theROMsinusoidaltablewillholda¼sinewave(0,p/2)ofmagnitudevalues.TheROMtableisgeneratedbytakingallpossiblephasevalueaddressesandmaptoarealmagnitudesinevalueroundedtothenearestDbits.Thus,themaximumerroroutputis±-½LSBgivingaworstcasespurof-20log(2D)dBc.LiketheNCOROMtable,aDACquantizesthedigitalmagnitudevalues.ADAC,however,outputsananalogvoltagecorrespondingtothedigitalinputvalue.WhendesigningtheNCOsinusoidalROMtable,oneshouldtakesomeempiricaldataontheDAClinearitytobetterunderstandtheinteractionbetweentheROMtableandtheDAC.ThequantizationforaDACisspecifiedagainstanideallinearplotofdigitalinputversusanalogoutput.Twolinearityparameters,differentialandintegrallinearity,areusedtospecifyaDAC’sperformance.Differentiallinearityistheoutputstepsizefrombittobit.ADACmustguaranteeadifferentiallinearityofamaximum1LSB.Whenaninputcodeisincreased,theDACoutputmustincrease.IftheDACvoltagedoesnotincreaseversusanincreasedigitalinputvalue,theDACissaidtobemissingcodes.Thus,a10bitDACthathasadifferentiallinearityofgreaterthat1LSBisonlyaccurateto9orlessbits.ThenumberofaccurateoutputbitswillspecifytheDDSspuriousperformanceas-20log(2dl)wheredlisthenumberdifferentiallinearbits..IntegrallinearityisameasureoftheDAC’soveralllinearperformanceversusanideallinearstraightline.Thestraightlineplotcanbeeithera“beststraightline”whereDCoffsetsarepossibleatboththeminandmaxoutputsoftheDAC,orthestraightlinecancrosstheendpointsoftheminandmaxoutputvalues.ADACwilltendtohaveacharacteristiccurvethatistraversedovertheoutputrange.Dependingontheshapeandsymmetry(symmetryaboutthehalfwaypointoftheDACoutput)ofthiscurve,outputharmonicsoftheDDSfundamentaloutputfrequencywillbeproduced.AstheseharmonicsapproachandcrosstheNyquistfrequencyofFclk/2,theharmonicsbecomeundersampledandreflectbackintothebandofinterest,0toFclk/2.ThisproblemisbestillustratedbysettingtheNCOoutputtoFclk/4plusaslightoffset.Thethirdharmonicwillfallminus3foldsthesmalloffsetfromthefundamentalandthesecondharmonicwillcrosstheNyquistfrequencyby2foldsthesmalloffsetleavingareflectedimagebackinthebandofinterestAsampleplotofthisfrequencysetupisshowninFigure5.OtherDACcharacteristicthatwillproduceharmonicdistortionisanydisruptionofthesymmetryoftheoutputwaveformsuchasadifferentriseandfalltime.ThesecharacteristicscantypicallybecorrectedbyboardcomponentsexternaltotheDACsuchasanRFtransformer,boardlayoutissues,attenuationpadsetc.GiventhecomplexitiesoftheDDSsystem,engineersshouldconsiderimplementingthedesignusingseparatedevicesforthenumericallycontrolledoscillator,thedigitaltoanalogconverter,andthelowpassfilter.Thisapproachallowsforsignalobservationatmanypointsinthesystem,yetiscompactenoughtobepracticalasanend-solution.Alternatively,thediscreteimplementationcanserveasaprototypingvehicleforasingle-chipmixedsignalASIC.TheauthordevelopedaversionofthedesignusingaHarrisHI5721evaluationboardfortheDAC.TheNCOattheheartoftheDDSdesign,andarandomgeneratortotestsignalmodulation,wasimplementedintoabout65%ofaQuickLogicfieldprogrammablegatearray(FPGA).ThisFPGA,aQL16x24B4000-gatedevice,waschosenforitshighperformance,ease-of-use,andpowerfuldevelopmenttools.TheNCOdesignincludedfollowing:DevelopedinVerilogwiththe8bitCLAadderschematiccapturedandnetlistedtoVerilog32bitfrequencywordinput32phaseaccumulatorpipelinedover8bits8bitphasemoudulationwordinput8bitsineROMlook-uptableThedesignwasdescribedmostlyinVerilog,withan8bitcarrylookaheadaddermodifiedfromQuickLogic’smacrolibrarynetlistedtoVerilog.Thewholedesigncyclewaslessthanfourdays(twodaystodescribethedesignandadayandahalftoprototypethehardware).Everythingworkedperfectlythefirsttime,withthedesignrunningatanimpressive45MHzaspredictedbythesoftwaresimulationtools.PlotsusedinthearticletoillustrateDDSperformanceparameterswereprovidedfromthetestconfiguration.Figure6belowshowstheexternalIOinterfacetotheNCOdesign.Thefunctionofeachsignalisdescribedinthefollowingtable.SignalFunctionTableFREQWORD[31:0]ThisinputisthefrequencycontrolwordtotheNCO.Thiswordcontrolsthephaseaccumulatorrate,andthus,theoutputfrequencyoftheDACOUTsinusoidalwaveform.Theoutputcarrierfrequencyiscalculatedbythefollowing:PHASEWORD[7:0]ThisinputisthephasemodulationcontrolwordtotheNCO.Thiswordcontrolsthephaseoffsetfollowingthephaseaccumulator.Thisphaseoffsetisusedtophasemodulatetheoutputcarrier.FWWRNThisinputisthelowassertedfrequencywordwritestrobe.ThisstrobeinputregisterstheFREQWORDinputontherisingedge.ThisstrobecanbeasynchronoustotheSYSCLK.SYSCLKThisisthereferencesystemclockinputtotheNCO.Thisclockisthesamplingclockoftheoutputcarrier.PNCLKThisinputisthepseudo-noisegeneratorclockinput.ThisclocksetsthedatarateoftheIandQdataoutputs.RESETNThisinputisalowassertedglobalreset.Whenasserted,theinternalphaseandfrequencywordregistersareclearedstoppingtheoutputcarrierat0radians.DACOUT[7:0]ThisoutputisthesinusoidalDACamplitudeword.ThiswordisvalidontherisingedgeoftheDACCLK.Thesinusoidalwaveformoutputisrepresentedbythefollowing:f(t)=sin(2pFout(t)+Pout)DACCLKThisoutputistheDACclockstrobe.ThisclockistheSYSCLKfeedbacktoanoutputpincompensatingforthelatencyoftheNCOIOpins.TheDACOUTamplitudewordswillbevalidontherisingedgeoftheDACCLK.SINThisoutputisasinglebitdigitalsinewaveoutput.ThissinewaveoutputcomesfromtheMSBofthephaseaccumulator.Theoutputfrequencyofthispiniscontrolledbythefrequencywordinput.COSThisoutputisasinglebitdigitalcosinewaveoutput.ThiscosinewaveoutputcomesformtheMSBandnextmostsignificantbitofthephaseaccumulator.Theoutputfrequencyofthispiniscontrolledbythefrequencywordinput.MSINThisoutputisasinglebitdigitalsinewaveoutput.ThissinewaveoutputcomesfromtheMSBofthephasemodulator.Theoutputfrequencyofthispiniscontrolledbythefrequencywordinputandphaseoffsetbythephasewordinput.ThissinewaveoutputisthesameastheSINoutputwithaphaseoffsetofplus2p/28*PHASEWORD.MCOSThisoutputisasinglebitdigitalcosinewaveoutput.ThiscosinewaveoutputcomesformtheMSBandnextmostsignificantbitofthephasemodulator.Theoutputfrequencyofthispiniscontrolledbythefrequencywordinputandthephaseoffsetbythephasewordinput.ThiscosinewaveoutputisthesameastheCOSoutputwithaphaseoffsetofplus2p/28*PHASEWORD.IDATAThisoutputisa25-1pseudonoiserandompattern.ThisoutputisnotafunctionalpartoftheNCOdesignbutusedtodemonstratephasemodulationusingthephaseport.QDATAThisoutputisa25-1pseudonoiserandompattern.ThisoutputisnotafunctionalpartoftheNCOdesignbutusedtodemonstratephasemodulationusingthephaseport.Figure6:TheExternalIOInterfaceTopLevel(dds.v)ThetopleveloftheNCOdesigninstantiatesthefunctionalblocksoftheNCOdesignandthePNgeneratorblock.PNGenerator(pngen.v)ThismoduleisnotpartoftheNCOdesignbutisusedtoproduceasamplerandomdatapatterntomodulatethecarrieroutput.ThismoduleusesthePNCLKinputtoclocktwoGoldcode5bitPNgenerators.TheoutputsofthePNgeneratorsareIDATAandQDATAoutputs.ThelowerlevelblockofthisNCOdesignconsistofasynchronousfrequencywordinputregister,asynchronousphasewordinputregister,a32bitpipelinedphaseaccumulator,an8bitphaseadder,andasinlockuptable.AdetaileddescriptionofeachoftheNCOblocksandthePNgeneratorareprovidedinthefollowingsections.LoadFrequencyWord(loadfw.v)Theloadfrequencywordblockisasynchronizingloadingcircuit.TheFREQWORD[31:0]inputdrivesathedatainputtothe32bitfwregregisterthatissampledontherisingedgeoftheFWWRNwritestrobe.TheFWWRNstrobealsodrivesthedatainputtoametastableflipflopfwwrnmthatisusedinconjunctionwithasynchronousregisterfwwrnstoproduceaFWWRNrisingedgestrobe.Thisrisingedgestrobeloadp1isthenpipedforanadditional3clockcyclesproducingtheloadstrobesloadp2,loadp3,andloadp4.Theloadstrobesareusedtosignalwhentoupdatethesynchronouspipeline8bitregisterspipefw1,pipefw2,pipefw3,andpipefw4tothesampledfrequencywordcontent.Thepipelineregistersareconcatenatedtoproducethe32bitsynchronousfrequencywordoutputSYNCFREQ[31:0]thatisstaggeredtocompensateforthe32bitpipelinedphaseadder.PhaseWordAccumulator(phasea.v)Thephaseaccumulatorblockisa32bitaccumulatorthatispipelinedin8bitsections.ThismoduleinstanciatesaschematiccapturedcarrylockaheadCLAadderthathasacarryinandcarryoutport.Thesynchronousfrequencyword,staggeredtomatchthepipelinedaccumulator,isloadedintotheBinputoftheCLAadders.ThesumoutputoftheCLAaddersareregisteredinthepiperegisteredwiththeoutputtiedbacktotheAinputoftheCLAadders.ThecarryoutputoftheCLAaddersisregisteredinthepipecregisterswiththeoutputtiedtothenextmostsignificantCLAaddercarryinput.Themostsignificantsumoutputregisterpipe4isassignedtothePHASEoutputportgivingaphasevaluequantizedto8bits.Adigitalsineandcosinevalueisalsocalculatedfromthepipe4registerandbroughtoutofthechipasSINandCOS.LoadPhaseWord(loadpw.v)Theloadphasewordblockisasynchronizingloadingcircuit.ThePHASEWORD[7:0]inputdrivesthedatainputtothe32bitpwregregisterthatissampledontherisingedgeofthePWWRNwritestrobe.ThePWWRNstrobealsodrivesthedatainputtoametastableflipfloppwwrnmthatisusedinconjunctionwithasynchronousregisterpwwrnstoproduceaFWWRNrisingedgestrobe.Thisrisingedgestrobeloadisusedtosignalwhentoupdatethesynchronousphasewordregisterphswd.ThephswdregisterisassignedtothesynchronousphasewordoutputSYNCPHSWD[7:0].PhaseModulator(phasemod.v)Thephasemodulatorblockisusedtophaseoffsetthephaseaccumulator8bitquantizedoutputwiththesynchronousphasewordfromtheloadphasewordblock.ThismoduleinstantiatesaCLAadderwiththeAinputtiedtothesynchronousphaseoutputandtheBinputtiedtothephaseaccumulatoroutput.ThesumoutputoftheadderisregisteredinthemphsregregisterandassignedtotheMODPHASEoutputport.AmodulatedversionofthesineandcosinevaluesarecalculatedandbroughtoutofthechipasMSINandMCOS.SineLockup(sinlup.v)Thismoduletakesthemodulatedphasevalueformthephasemodulatorblockandtranslatedthequantized8bitvalueintoasinewaveformamplitudevaluequantizedto8bits.ThetranslationfromphasetoamplitudeisperformedbyasineROMtablethatininstantiatedinthismodule.TheROMtableisreducedtoa¼ofthesymmetricalsinewaveformandtheMSBofthesinewaveformisequivalenttothemodulatedphaseinput.Thismoduleperformsthecalculationstoreconstructacompleteperiodofthesinewaveformfromthe¼representationoftheROMtableandtheMSBofthemodulatedphaseinput.Tobetterunderstandtheprocessingofthismodule,considerthefollowing.Themodulatedphasevalueisa0to2pvaluequantizedto8bits2p/28.Thequantizedvalueforp/2,p,3p/2,and2pare0x3F,0x7F,0xBF,and0xFF.Theamplitudevaluesfor0top/2isstoredintheROMtable.Theamplitudevaluesforp/2toparetheROMtableoutputinthereverseorder.Theamplitudevaluesforpto3p/2arethesameoutputastheamplitudevaluefrom0top/2withtheoutputfromtheROMtableinverted.Finallytheamplitudevaluefor3p/2to2parethesameasforpto3p/2withtheROMtableaccessedinreverse.ThismodulemanagestheaddressvaluestotheROMtableandtheamplitudeoutputstoformthecompleteperiodofthesinewaveform.ThefirstprocessofgeneratingthesinewavefunctionistheaddressingoftheROMtablesuchthatphaseanglesp/2topand3p/2to2pareaddressedinthereverseorder.ReverseaddressingisaccomplishedbysimplyinvertingtheROMtableaddressinputvector.ThephasemodulatedaddressinputisinvertedwhentheMODPHASE[6]isoneandisthenregisteredinthephaseaddregister.ThephaseaddressisusedtoaddresstheROMsinetablewiththeoutputregisteredintheqwavesin_ffregister.Toconstructthenegativeamplitudevaluesofthesinewaveform,theMSBofthemodulatephasewordinputisregisteredtwiceinmodphase_msb1_ffandmodphase_msb2_ff,compensatingforthetwocyclelatencyofthephaseaddandqwavesin_ffregisters.ThedelayedMSBbitisusedtoinverttheROMtableoutputwhenone.ThealteredROMtableoutputandtheinvertofthedelayedmodulatedphasewordMSBarefinallyregisteredinbythedac_ffregisterandthenassignedtotheDACOUToutputport.SineROMTable(romtab.v)ThismoduleisthesinewaveformROMtable.Thistableconvertsthephasewordinputtoasineamplitudeoutput.Toconservearea,only¼ofthesymmetricalsinewaveformisstoredintheROM.Thesinevaluesstoredinthistablearethe0top/2unsignedvaluesquantizedto8bits.Thus,theROMtablerequiresa6bitphaseaddressinputandoutputsa7bitamplitudeoutput.Thesinlupmoduleprocessesthephaseandamplitudevaluestoproduceacompletesineperiod.DanMorellihasover9yearsofdesignandmanagementexperience.Hisareasofexpertiseincludespreadspectrumcommunications(involvingGPS,TDRSS,and802.11),PCchipsetandsystemarchitecture,celllibrarydevelopment(forECLdevices)andASICdevelopment.Hehasbeenpublishedandhasmultiplepatentsawardedandpending.DancurrentlyworksforAccelentSystemsInc.,anelectronicdesignconsultingcompany,whereheisafounderandtheVPofEngineering.
数字频率合成器在探讨许多复杂的相位连续的调制技术中,对模拟电路中输出波形的控制已经越来越困难。在这些设计中,使用非线性数字式设计除去电路板需要的调整额外输出和温度。一个适合这个目标的数字式设计就是直接数字频率合成器(DDS)。一个DDS系统仅仅使用一个恒定参考时钟输入和将该时钟分解为指定的量化数位频率输出或者对参考时钟频率取样。这种形式是频率控制使得DDS系统成为需要精确频率扫描比如雷达尖叫声或者快速频率计量器的理想系统。根据数字输入控制字以控制输出频率,DDS系统可以用来当作一个允许精确频率连续改变相位的锁相环(PLL)。根据后面的说明,我们知道DDS系统还可以使用输入数字相位控制字来控制输出载波的相位。用数字式控制载波相位,很容易产生一个高频谱密度的相位调制载波。本文主旨是给读者一个基本的DDS设计和寄生输出响应的知识。本文将展示一个运行于45MHz的快速现场可编辑逻辑器件。一个基本的DDS系统包括一个数字振荡器(NCO)用来产生输出载波,和一个数模转换器(DAC)用来将从NCO过来的数字式正弦曲线字产生一个抽样的模拟载波。当DAC的输出是根据参考时钟频率的抽样时,通常用一个圆滑波形的低通滤波器来消除混叠成分。根据输入的参考时钟抽样经过NCO来产生输出载波。NCO的基本构成是一个相位累加器和一个正弦ROM查找表。通过增加NCO的载波相位调制的输出能力可以提高DDS系统的设计。为了更好的理解NCO设计的各种功能,首先考虑仅包括一个相位累加器和一个正弦ROM查找表的基本NCO设计。与欧拉公式(Euler’sformula)图解比较就能最好地理解这两个表的NCO设计的功能。欧拉公式的图解如图3所示,是一个单位向量绕着实轴和虚平面的中心以Wrad/s的速度转圈。这个频率控制字是最后一个抽样相位值通过一个N位加法器的连续地累加而成。加法器的输出是参考抽样时钟通过一个N位寄存器的抽样。当累加器达到N位最大值的时候,累加器翻转然后继续。然后相位累加器的抽样输出用来在一个正弦量化值表里进行查找。抽样相位到正弦量化的转化可以看作是真实的或者虚拟的成分及时地影射。因为相位累加器的比特位数决定了频率调整的步进,一个典型的相位累加器的大小是24到32位。由于正弦ROM表的大小是跟寻址范围直接成比例的,因此,不是所有相位累加器的24或32位都用来作为正弦ROM表的地址。仅是相位累加器的高Y(Y〈N〉位是用来作为正弦ROM表的地址,Y通常不必要等于正弦ROM表的输出量位D。因为一个NCO输出的一个基于一个数字表示的相位和正弦波量化形式的载波,所以设计者可以完全的控制输出载波的频率,相位和幅度。通过加入一个相位端口和一个相位加法器到一个基本的NCO设计中,NCO的输出载波当M等于相位端口数和M小于或等于Y(用来作为正弦ROM表的地址位数)时可以被M矩阵相位调制。假如系统设计需要幅度调制如QAM,可以加入一个量化端口来调整正弦ROM表的输出。注意到这个端口没有在图2里表示出来以及这个特色没有在简单的快速逻辑FPGA设计中论证。最后,频率是调制是一个基本的NCO设计给出的。因为频率控制字是跟抽样时钟是同步装载到DDS的,频率的转化是相位连续的。虽然DDS系统给设计者完全地控制复杂的调制合成,但是在一个非线性数字格式的正弦相位和量级的表示却是复杂的新设计。在取样任何的连续时间信号时,必须考虑取样原理和量子化误差。为了理解DDS系统中取样理论的效果,最好看一下时间和频率域的DDS合成过程。就象上面规定的,通过以指定的速率累积的形式由NCO产生一个正弦波然后用一个相位的值来定位一个正弦调制ROM表的值。因此,NCO本质上用一个正弦波和用NCO的上升或下降沿输出参考取样时钟对其取样。图4表示在时间和频率域里NCO的处理。注意到这个表示并非量子化假设。基于频率控制字的装载,NCO在一个时期内提供一批幅度的输出值。这个正弦曲线的频率域表示在指定的频率里是一个推动的作用。N
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年软件开发合同详细规定
- 2024年高层建筑防火门窗安装验收合同
- 2024年股东间利润分配合同
- 2024版施工项目经理聘用合同范本
- 2025年度甲醇项目环境影响评价合同3篇
- 二零二五年度体育场馆场地租赁及赛事组织服务协议2篇
- 2024年石膏板材料买卖合同模板3篇
- 2025年吉林建筑安全员《B证》考试题库及答案
- 2024年首次出租房屋租赁合同
- 2024年法律口译服务合同
- 矿业公司规章制度汇编
- 《高低压配电室施工工艺标准》
- 2024年太阳能光伏组件高空清洗作业人员安全保障合同3篇
- 大学学业规划讲座
- 《国家课程建设》课件
- 四川省南充市2023-2024学年高一上学期期末考试 历史 含解析
- 新教科版小学1-6年级科学需做实验目录
- 2024年贵州贵阳市贵安新区产业发展控股集团有限公司招聘笔试参考题库含答案解析
- 美国RAZ分级读物目录整理
- 地方课程六年级上册
- 中科院大连化物所模板PPT课件
评论
0/150
提交评论