初中数学数轴教案范文模板6篇_第1页
初中数学数轴教案范文模板6篇_第2页
初中数学数轴教案范文模板6篇_第3页
初中数学数轴教案范文模板6篇_第4页
初中数学数轴教案范文模板6篇_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中数学数轴教案范文模板6篇作业篇一

1.在下面数轴上:

(1)分别指出表示-2,3,-4,0,1各数的点.

(2)A,H,D,E,O各点分别表示什么数?

2.在下面数轴上,A,B,C,D各点分别表示什么数?

3.以下各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:

(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};

课堂教学设计说明

从学生已有学问、阅历动身讨论新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思索:把射线怎样做些改良就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要仔细分析它的作用,使学生从直观熟悉上升到理性熟悉.直线、数轴都是特别抽象的数学概念,固然对初学者不宜讲的过多,但适当引导学生进展抽象的思维活动还是可行的.例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等.

数轴的相关学问点篇二

1.数轴的概念

(1)规定了原点、正方向和单位长度的直线叫做数轴.

这里包含两个内容:一是数轴的三要素:原点、正方向、单位长度缺一不行.二是这三个要素都是规定的.

(2)数轴能形象地表示数,全部的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.

以数轴是理解有理数概念与运算的重要工具.有了数轴,数和形得到初步结合,数与表示数的图形(如数轴)相结合的思想是学习数学的重要思想.另外,数轴能直观地解释相反数,帮忙理解肯定值的意义,还可以比拟有理数的大小.因此,应重视对数轴的学习.

2.数轴的画法

(1)画直线(一般画成水平的)、定原点,标出原点“O”.

(2)取原点向右方向为正方向,并标出箭头.

(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。详细如下列图。

(4)标注数字时,负数的次序不能写错,如下列图。

3.用数轴比拟有理数的大小

(1)在数轴上表示的两数,右边的数总比左边的数大。

(2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

(3)比拟大小时,用不等号顺次连接三个数要防止消失“”的写法,正确应写成“”。

教法建议篇三

小学里曾学过利用射线上的点来表示数,为此我们可引导学生思索:把射线怎样做些改良就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是推断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要留意原点位置选择的任意性。

关于有理数与数轴上的点的对应关系,应当明确的是有理数可以用数轴上的点表示,但数轴上的点与有理数并不存在一一对应的关系。依据几个有理数在数轴上所对应的点的相互位置关系,应当能够推断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

初一数学数轴教案篇四

教学目标

1、了解数轴的概念和数轴的画法,把握数轴的三要素;

2、会用数轴上的点表示有理数,会利用数轴比拟有理数的大小;

3、使学生初步了解数形结合的思想方法,培育学生相互联系的观点。

教学建议

一、重点、难点分析

本节的重点是初步理解数形结合的思想方法,正确把握数轴画法和用数轴上的点表示有理数,并会比拟(牛牛范文★.)有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不行,二是这三个要素都是规定的。另外应当明确的是,全部的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步把握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下根底。

二、学问构造

有了数轴,数和形得到了初步结合,这有利于对数学问题的讨论,数形结合是理解数学、学好数学的方法,本课学问要点如下表:

定义三要素应用

数形结合

规定了原点、正方向、单位长度的直线叫数轴原点

正方向

单位长度帮忙理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数比拟有理数大小,数轴上右边的数总比左边的数要大

在理解并把握数轴概念的根底之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道全部的有理数都可以用数轴上的点表示,会利用数轴比拟有理数的大小。

三、教法建议

小学里曾学过利用射线上的点来表示数,为此我们可引导学生思索:把射线怎样做些改良就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是推断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要留意原点位置选择的任意性。

关于有理数与数轴上的点的对应关系,应当明确的是有理数可以用数轴上的点表示,但数轴上的点与有理数并不存在一一对应的关系。依据几个有理数在数轴上所对应的点的相互位置关系,应当能够推断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

四、数轴的相关学问点

1、数轴的概念

(1)规定了原点、正方向和单位长度的直线叫做数轴。

这里包含两个内容:一是数轴的三要素:原点、正方向、单位长度缺一不行。二是这三个要素都是规定的。

(2)数轴能形象地表示数,全部的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。

以数轴是理解有理数概念与运算的重要工具。有了数轴,数和形得到初步结合,数与表示数的图形(如数轴)相结合的思想是学习数学的思想。另外,数轴能直观地解释相反数,帮忙理解肯定值的意义,还可以比拟有理数的大小。因此,应重视对数轴的学习。

2、数轴的画法

(1)画直线(一般画成水平的)、定原点,标出原点“O”。

(2)取原点向右方向为正方向,并标出箭头。

(3)选适当的长度作为单位长度,并标出…,—3,—2,—1,1,2,3…各点。详细如下列图。

(4)标注数字时,负数的次序不能写错,如下列图。

3。用数轴比拟有理数的大小

(1)在数轴上表示的两数,右边的数总比左边的数大。

(2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

(3)比拟大小时,用不等号顺次连接三个数要防止消失“”的写法,正确应写成“”。

五、数轴定义的理解

数轴定义的理解篇五

1.规定了原点、正方向和单位长度的直线叫做数轴,如图1所示.

2、全部的有理数,都可以用数轴上的点表示.例如:在数轴上画出表示以下各数的点(如图2).

A点表示-4;B点表示-1.5;

O点表示0;C点表示3.5;

D点表示6.

从上面的例子不难看出,在数轴上表示的两个数,右边的数总比左边的数大,又从正数和负数在数轴上的位置,可以知道:

正数都大于0,负数都小于0,正数大于一切负数.

由于正数都大于0,反过来,大于0的数都是正数,所以,我们可以用,表示是正数;反之,知道是正数也可以表示为。

同理,,表示是负数;反之是负数也可以表示为。

3.正数轴常见几种错误

1)没有方向

2)没有原点

3)单位长度不统一

教学设计例如

数轴(一)

教学目标

1.使学生正确理解数轴的意义,把握数轴的三要素;

2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

3.使学生初步理解数形结合的思想方法.

教学重点和难点

重点:初步理解数形结合的思想方法,正确把握数轴画法和用数轴上的点表示有理数.

难点:正确理解有理数与数轴上点的对应关系.

初一数学数轴教案篇六

教学目的:

理解一元一次方程解简洁应用题的方法和步骤;并会列一元一次方程解简洁应用题。

重点、难点

1、重点:弄清应用题题意列出方程。

2、难点:弄清应用题题意列出方程。

教学过程

一、复习

1、什么叫一元一次方程?

2、解一元一次方程的理论依据是什么?

二、新授。

例1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应当从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?

分析:等量关系;A盘现有盐=B盘现有盐

检验所求出的解是否合理。培育学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。

例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了1400块,问初一同学有多少人参与了搬砖?

1、题目中有哪些已知量?

(1)参与搬砖的初一同学和其他年级同学共65名。

(2)初一同学每人搬6块,其他年级同学每人搬8块。

(3)初一和其他年级同学一共搬了1400块。

2、求什么?初一同学有多少人参与搬砖?

3、等量关系是什么?

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论