华东师大版八年级下册数学教案【精选5篇】_第1页
华东师大版八年级下册数学教案【精选5篇】_第2页
华东师大版八年级下册数学教案【精选5篇】_第3页
华东师大版八年级下册数学教案【精选5篇】_第4页
华东师大版八年级下册数学教案【精选5篇】_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

千里之行,始于足下让知识带有温度。第第2页/共2页精品文档推荐华东师大版八年级下册数学教案【精选5篇】华东师大版八年级下册数学教案【精选5篇】

聪慧出于勤奋,天才在于积累。数学是无穷的科学。观看可能导致发觉,观看将揭示某种规章、模式或定律。这里给大家共享一些关于华东师大版八年级下册数学教案,供大家参考学习。

华东师大版八年级下册数学教案(篇1)

一、学习目标

1.多项式除以单项式的运算法则及其应用。

2.多项式除以单项式的运算算理。

二、重点难点

重点:多项式除以单项式的运算法则及其应用。

难点:探究多项式与单项式相除的运算法则的过程。

三、合作学习

(一)回顾单项式除以单项式法则

(二)同学动手,探究新课

1.计算下列各式:

(1)(am+bm)÷m;

(2)(a2+ab)÷a;

(3)(4x2y+2xy2)÷2xy。

2.提问:

①说说你是怎样计算的;

②还有什么发觉吗?

(三)总结法则

1.多项式除以单项式:先把这个多项式的每一项除以__________X,再把所得的商______

2.本质:把多项式除以单项式转化成______________

四、精讲精练

例:(1)(12a3—6a2+3a)÷3a;

(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

(3)[(x+y)2—y(2x+y)—8x]÷2x;

(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

随堂练习:教科书练习。

五、小结

1、单项式的除法法则

2、应用单项式除法法则应留意:

A、系数先相除,把所得的结果作为商的系数,运算过程中留意单项式的系数饱含它前面的符号;

B、把同底数幂相除,所得结果作为商的因式,由于目前只讨论整除的状况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要留意运算挨次,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的挨次进行;

E、多项式除以单项式法则。

华东师大版八年级下册数学教案(篇2)

第三十四学时:14.2.1平方差公式

一、学习目标:

1.经受探究平方差公式的过程。

2.会推导平方差公式,并能运用公式进行简洁的运算。

二、重点难点

重点:平方差公式的推导和应用;

难点:理解平方差公式的结构特征,敏捷应用平方差公式。

三、合作学习

你能用简便方法计算下列各题吗?

(1)20_×1999(2)998×1002

导入新课:计算下列多项式的积.

(1)(x+1)(x—1);

(2)(m+2)(m—2)

(3)(2x+1)(2x—1);

(4)(x+5y)(x—5y)。

结论:两个数的和与这两个数的差的积,等于这两个数的平方差。

即:(a+b)(a—b)=a2—b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x—2);

(2)(b+2a)(2a—b);

(3)(—x+2y)(—x—2y)。

例2:计算:

(1)102×98;

(2)(y+2)(y—2)—(y—1)(y+5)。

随堂练习

计算:

(1)(a+b)(—b+a);

(2)(—a—b)(a—b);

(3)(3a+2b)(3a—2b);

(4)(a5—b2)(a5+b2);

(5)(a+2b+2c)(a+2b—2c);

(6)(a—b)(a+b)(a2+b2)。

五、小结

(a+b)(a—b)=a2—b2

华东师大版八年级下册数学教案(篇3)

学问技能

1、了解两个图形成轴对称性的性质,了解轴对称图形的性质。

2、探究线段垂直平分线的性质。

过程方法

1、经受探究轴对称图形性质的过程,进一步体验轴对称的特点,进展空间观看。

2、探究线段垂直平分线的性质,培育同学仔细探究、乐观思索的力量。

情感态度价值观通过对轴对称图形性质的探究,促使同学对轴对称有了更进一步的熟悉,活动与探究的过程可以更大程度地激发同学学习的主动性和乐观性,并使同学具有一些初步讨论问题的力量。

教学重点

1、轴对称的性质。

2、线段垂直平分线的性质。

教学难点体验轴对称的特征。

教学方法和手段多媒体教学

过程教学内容

引入中垂线概念

引出图形对称的性质第一张幻灯片

上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界特别漂亮。那么我们今日连续来讨论轴对称的性质。

幻灯片二

1、图中的对称点有哪些?

2、点A和A的连线与直线MN有什么样的关系?

理由?:△ABC与△ABC关于直线MN对称,点A、B、C分别是点A、B、C的对称点,设AA交对称轴MN于点P,将△ABC和△ABC沿MN对折后,点A与A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC与MN除了垂直以外,MN还经过线段AA、BB和CC的中点。

我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

定义:经过线段的中点并且垂直于这条线段,就叫这条线段的垂直平分线,也叫中垂线。

华东师大版八年级下册数学教案(篇4)

一、教学目标

1、理解一个数平方根和算术平方根的意义;

2、理解根号的意义,会用根号表示一个数的平方根和算术平方根;

3、通过本节的训练,提高同学的规律思维力量;

4、通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发同学探究数学神秘的爱好。

二、教学重点和难点

教学重点:平方根和算术平方根的概念及求法。

教学难点:平方根与算术平方根联系与区分。

三、教学方法

讲练结合

四、教学手段

幻灯片

五、教学过程

(一)提问

1、已知一正方形面积为50平方米,那么它的边长应为多少?

2、已知一个数的平方等于1000,那么这个数是多少?

3、一只容积为0.125立方米的正方体容器,它的棱长应为多少?

这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:

同学在完成此练习时,最简单消失的错误是丢掉负数解,在教学时应留意订正。

由练习引出平方根的概念。

(二)平方根概念

假如一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。

用数学语言表达即为:若x2=a,则x叫做a的平方根。

由练习知:±3是9的平方根;

±0.5是0.25的平方根;

0的平方根是0;

±0.09是0。0081的平方根。

由此我们看到+3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:

()2=—4

同学思索后,得到结论此题无答案。反问同学为什么?由于正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的。下面总结一下平方根的性质(可由同学总结,老师整理)。

(三)平方根性质

1、一个正数有两个平方根,它们互为相反数。

2、0有一个平方根,它是0本身。

3、负数没有平方根。

(四)开平方

求一个数a的平方根的运算,叫做开平方的运算。

由练习我们看到+3与—3的平方是9,9的平方根是+3和—3,可见平方运算与开平方运算互为逆运算。依据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。

(五)平方根的表示方法

一个正数a的正的平方根,用符号“”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“—”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“”读作“正、负根号a”。

练习:1、用正确的符号表示下列各数的平方根:

①26②247③0.2④3⑤

解:①26的平方根是

②247的平方根是

③0.2的平方根是

④3的平方根是

⑤的平方根是

由同学说出上式的读法。

例1。下列各数的平方根:

(1)81;(2);(3);(4)0.49

解:(1)∵(±9)2=81,

∴81的平方根为±9。即:

(2)

的平方根是,即

(3)

的平方根是,即

(4)∵(±0。7)2=0.49,

∴0.49的平方根为±0.7。

小结:让同学熟识平方根的概念,把握一个正数的平方根有两个。

六、总结

本节课主要学习了平方根的概念、性质,以及表示方法,回去后要认真阅读教科书,巩固所学学问。

七、作业

教材P.127练习1、2、3、4。

八、板书设计

平方根

(一)概念

(二)性质

(三)开平方

(四)表示方法

探究活动

求平方根近似值的一种方法

求一个正数的平方根的近似值,通常是查表。这里讨论一种笔算求法。

例1。求的值。

解∵92102,

两边平方并整理得

∵x1为纯小数。

18x1≈16,解得x1≈0.9,

便可依次得到精确度

为0.01,0.001,……的近似值,如:

两边平方,舍去x2得19.8x2≈—1.01

华东师大版八年级下册数学教案(篇5)

教学目标

1、学问与技能目标

学会观看图形,勇于探究图形间的关系,培育同学的空间观念。

2、过程与方法

(1)经受一般规律的探究过程,进展同学的抽象思维力量。

(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的力量及渗透数学建模的思想。

3、情感态度与价值观

(1)通过好玩的问题提高学习数学的爱好。

(2)在解决实际问题的过程中,体验数学学习的有用性。

教学重点:

探究、发觉事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。

教学难点:

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。

教学预备:

多媒体

教学过程:

第一环节:创设情境,引入新课(3分钟,同学观看、猜想)

情景:

如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕获到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?

其次环节:合作探究(15分钟,同学分组合作探究)

同学分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分争论后,汇总各小组的方案,在全班范围内争论每种方案的路线计算方法,通过详细计算,总结出最短路线。让同学发觉:沿圆柱体母线剪开后绽开得到矩形,讨论“蚂蚁怎么走最近”就是讨论两点连线最短问题,引导同学体会利用数学解决实际问题的方法:建立数学模型,构图,计算。

同学汇总了四种方案:

(1)(2)(3)(4)

同学很简单算出:情形(1)中A→B的路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的路线比情形(2)要短。

同学在情形(3)和(4)的比较中消失困难,但还是有同学提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故依据两点之间线段最短可推断(4)最短。

如图:

(1)中A→B的路线长为:AA’+d;

(2)中A→B的路线长为:AA’+A’BAB;

(3)中A→B的路线长为:AO+OBAB;

(4)中A→B的路线长为:AB。

得出结论:利用绽开图中两点之间,线段最短解决问题。在这个环节中,可让同学沿母线剪开圆柱体,详细观看。接下来后提问:怎样计算AB?

在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则。

第三环节:做一做(7分钟,同学合作探究)

教材23页

李叔叔想要检测雕塑底座正面的AD边和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论