材料热学性能报告_第1页
材料热学性能报告_第2页
材料热学性能报告_第3页
材料热学性能报告_第4页
材料热学性能报告_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

材料热学性能报告

热学性能:包括热容(thermalcontent),热膨胀(thermalexpansion),热传导(heatconductivity),热稳定性(thermalstability)等。本章目的就是探讨热性能与材料宏观、微观本质关系,为研究新材料、探索新工艺打下理论基础。

(动能kineticenergy)i=热量(quantityofheat)即:各质点热运动时动能总和就是该物体的热量。弹性波(格波):包括振动频率低的声频支和振动频率高的光频支。

声频支可以看成是相邻原子具有相同的振动方向。由于两种原子的质量不同,振幅也不同,所以两原子间会有相对运动。光频支可以看成相邻原子振动方向相反,形成一个范围很小,频率很高的振动。

如果振动着的质点中包含频率甚低的格波,质点彼此之间的位相差不大,则格波类似于弹性体中的应变波,称为“声频支振动”。格波中频率甚高的振动波,质点彼此之间的位相差很大,邻近质点的运动几乎相反时,频率往往在红外光区,称为“光频支振动”。如图3.1,其中声频支最大频率:热容是物体温度升高1K所需要增加的能量。

(J/K)显然,质量不同热容不同,温度不同热容也不同。比热容单位—,摩尔热容单位—

。另外,平均热容,范围愈大,精度愈差。第一节材料的热容

式中:Q=热量,E=内能,H=热焓。由于恒压加热物体除温度升高外,还要对外界做功,所以恒压热容恒容热容

对于固体材料CP与CV差异很小,见图3.2。

一、晶态固体热容的经验定律(experiencelaw)和经典理论(classicaltheory)一是元素的热容定律——杜隆一珀替定律:恒压下元素的原子热容为表3.1部分轻元素的原子热容:元素HBCOFSiPSClCP9.611.37.516.720.915.922.522.520.4

另一个是化合物的热容定律——柯普定律:化合物分子热容等于构成该化合物各元素原子热容之和。理论解释:C=Σnici。其中,ni=化合物中元素i的原子数;ci=元素i的摩尔热容。根据经典理论,1mol固体中有个原子,总能量为

=6.023×1023/mol=阿佛加德罗常数,

=R/N=1.381×10-23J/K=玻尔茨曼常数,

=8.314J/(k·mol),T=热力学温度(K)。

由上式可知,热容是与温度T无关的常数(constant),这就是杜隆一珀替定律。对于双原子的固体化合物,1mol中的原子数为2N,故摩尔热容为按热容定义:

杜隆—珀替定律在高温时与实验结果很吻合。但在低温时,CV的实验值并不是一个恒量,下面将要作详细讨论。

对于三原子的固态化合物的摩尔热容:其余依此类推。

二、晶态固体热容的量子理论(quantumtheory)普朗克提出振子能量的量子化理论。质点的能量都是以hv为最小单位.式中,=普朗克常数,=普朗克常数,

=园频率。

将上式中多项式展开各取前几项,化简得:

根据麦克斯威—波尔兹曼分配定律可推导出,在温度为T时,一个振子的平均能量为:

在高温时,所以

即每个振子单向振动的总能量与经典理论一致。由于1mol固体中有N个原子,每个原子的热振动自由度是3,所以1mol固体的振动可看做3N个振子的合成运动,则1mol固体的平均能量为:

这就是按照量子理论求得的热容表达式。但要计算CV必须知道谐振子的频谱——非常困难(verydifficult)。1.爱因斯坦模型(Einsteinmodel)他提出的假设是:每个原子都是一个独立的振子,原子之间彼此无关,并且都是以相同的角频w振动,则上式变化为:式中,=爱因斯坦比热函数,令=爱因斯坦温度(einsteintemperature)。当T很高时,,则:则即在高温时,爱因斯坦的简化模型与杜隆—珀替公式相一致。但在低温时,即,

即说明CV值按指数规律随温度T而变化,而不是从实验中得出的按T3变化的规律。这样在低温区域,爱斯斯坦模型与实验值相差较大,这是因为原子振动间有耦合作用的结果。

2.德拜比热模型

德拜考虑了晶体中原子的相互作用,把晶体近似为连续介质(continuousmedium)。=德拜特征温度=德拜比热函数,其中,式中,由上式可以得到如下的结论:(1)当温度较高时,即,,即杜隆—珀替定律。(2)当温度很低时,即,计算得

这表明当T→0时,CV与T3成正比并趋于0,这就是德拜T3定律,它与实验结果十分吻合,温度越低,近似越好。三、材料的热容

根据德拜热容理论,在高于德拜温度θD时,低于θD时,CV~T3成正比,不同材料θD也不同。例如,石墨θD=1973K,BeO的θD=1173K,Al2O3的θD=923K。

图3.3是几种材料的热容-温度曲线。这些材料的θD约为熔点(热力学温度)的倍。对于绝大多数氧化物、碳化物,热容都是从低温时的一个低的数值增加到1273K左右的近似于25J/K·mol的数值。温度进一步增加,热容基本上没有什么变化。图中几条曲线不仅形状相似,而且数值也很接近。无机材料的热容与材料结构的关系是不大的,如图3.4所示。CaO和SiO21∶1的混合物与CaSiO3的热容-温度曲线基本重合。

固体材料CP与温度T的关系应由实验精确测定,大多数材料经验公式:式中CP的单位为4.18J/(k·mol),见表3.1。表3.1某些无机材料的热容-温度关系经验方程式系数一、固体材料热传导的宏观规律当固体材料一端的温度比另一端高时,热量会从热端自动地传向冷端,这个现象称为热传导。傅里叶定律:,它只适用于稳定传热的条件,即是常数。式中,λ=导热系数,它的物理意义是指单位温度梯度下,单位时间内通过单位垂直面积的热量,单位为J/(m2·S·k)。=x方向上的温度梯度。第二节材料的热传导当<0时ΔQ>0,热量沿x轴正方向传递。>0时,ΔQ<0,热量沿x轴负方向传递。对于非稳定传热过程:式中:=密度(density),=恒压热容。二、固体材料热传导的微观机理(micro-mechanism)气体导热——质点间直接碰撞;金属导热——自由电子间碰撞;固体导热——晶格振动(格波)=声子碰撞,并且格波分为声频支和光频支两类。

根据量子理论、一个谐振子的能量是不连续的,能量的变化不能取任意值,而只能是最小能量单元——量子(quantum)的整数倍。一个量子所具有的能量为hv。晶格振动的能量同样是量子化的。声频支格波(acousticfrequency)—弹性波—声波(acousticwave)—声子。把声频波的量子称为声子,其具有的能量为hv=hω

,固体热传导公式:式中,C=声子体积热容,l=声子平均自由程(meanfreedistance),=声子平均速度(meanvelocity)。1.声子和声子传导2.光子热导(photonconductivityofheat)

固体中除了声子的热传导外,还有光子的热传导。其辐射能量与温度的四次方成正比,例如,黑体单位容积的辐射能。式中,——斯蒂芬—波尔兹曼常数,n——折射率,——光速。

由于辐射传热中,容积热容相当于提高辐射温度所需能量同时则:式中,lr=辐射线光子的平均自由程,=描述介质中这种辐射能的传递能力,取决于光子的平均自由程lr。对于无机材料只有在1500℃以上时,光子传导才是主要的。三、影响热导率的因素

由于无机材料中热传导机构和过程是很复杂的,下面只定性讨论(qualitativeanalysis)热导率的主要因素:1.温度(temperature)

a.在温度不太高的范围内,主要是声子传导。

b.热容C在低温下与T3成正比,所以λ也近似与T3成正比。

c.声子平均自由程l随温度升高而降低。实验表明,低温下l值的上限为晶粒的线度,高温下l值的下限为晶格间距。

d.例如Al2O3在低温40k处,λ值出现极大值,见图3.9。

2.显微结构的影响(micro-structure)(1)结晶构造的影响

声子传导与晶格振动的非谐性有关,晶体结构愈复杂,晶格振动的非谐性程度愈大,格波受到的散射愈大,因此,声子平均自由程较小,热导率较低,见图3.10。(2)各向异性晶体的热导率非等轴晶系的晶体热导率呈各向异性。温度升高,晶体结构总是趋于更好的对称。因此,不同方向的λ差异变小。(3)多晶体与单晶体的热导率由于多晶体中晶粒尺寸小、晶界多、缺陷多、杂质也多,声子更易受到散射,它的l小得多,因此

l小,故对于同一种物质,多晶体的热导率总是比单晶小。见图3.11。(4)非晶体的热导率非晶体导热系数曲线如图3.12。①在OF段中低温(400~600K)以下,光子导热的贡献可忽略不计。声子导热随温度的变化由声子热容随温度变化规律决定。②从Fg段中温到较高温度(600~900K),随温度升高,声子热容趋于一常数,故声子导热系数曲线出现一条近平行于横坐标的直线。若考虑到此时光子导热的贡献,Fg变成Fg’段。

gh段高温以上(>900K),随着温度升高,声子导热变化不大,相当于gh段。但考虑光子导热贡献,则为gh→g’h’。晶体与非晶体导热系数曲线的差别:①非晶体的导热系数(不考虑光子导热的贡献)在所有温度下都比晶体的小。②在高温下,二者比较接近,因为声子热容在高温下都接近3R。③非晶体与晶体导热系数曲线的重大区别是前者没有导热系数峰值点m。见图3.13。这也说明非晶体物质的声子平均自由程在所有温度范围内均接近为一常数。3.化学组成的影响质点的原子量愈小,密度愈小,杨氏模量愈大,德拜温度愈高,则热导率λ愈大。晶体中存在的各种缺陷和杂质会导致声子的散射,降低声子的平均自由程,使热导率变小。四、某些材料的热导率

通常低温时有较高热导率的材料,随着温度升高,热导率降低。而低热导率的材料正相反。前者如Al2O3,BeO和MgO等。

式中:T—热力学温度(K);A—常数,例如:=16.2,=18.8,=55.4。上式适用的温度范围,Al2O3和MgO是293~2073K,BeO是1273~2073K。

玻璃体的导热率随温度的升高而缓慢增大。高于773K,由于辐射传热的效应使导热率有较快的上升,其经验方程式:式中:c,d为常数某些建筑材料,粘土质耐火砖以及保温砖等,其导热率随温度升高线性增大。一般的方程式是:

是0度时材料的导热率,b是与材料性质有关的常数.

一、热膨胀系数(Thermalexpansioncoefficient)

物体的体积或长度随温度升高而增大的现象叫做热膨胀。式中,αl=线膨胀系数,即温度升高1K时,物体的相对伸长。物体在温度T时的长度lT为:第三节材料的热膨胀

无机材料的,αl通常随T升高而加大。同理,物体体积随温度的增加可表示为:式中,αV体膨胀系数,相当于温度升高1k时物体体积相对增长值。对于物体是立方体(cube)由于αl值很小,可略以上的高次项,则:与上式比较,就有以下近似关系:对于各向异性的晶体(crystal),各晶轴方向的线膨胀系数不同,假如分别为αa、αb、αc,则同样忽略α二次方以上项:

所以一般膨胀系数的精确表达式:

一般耐火材料线膨胀系数,常指在20~1000℃范围内的αl平均值。一般αl愈小,材料热稳定性愈好。例如Si3N4的αl=2.7×10-6/K。二、热膨胀机理所谓线性振动是指质点间的作用力与距离成正比,即微观弹性模量β为常数。非线性振动是指作用力并不简单地与位移成正比,热振动不是左右对称的线性振动而是非线性振动。1.热膨胀本质

1)唯象解释:热膨胀的本质为点阵结构中的质点间平均距离随温度的升高而增大。在质点平衡位置r0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论