体积与表面积(练习)(含解析)2023年高考数学二轮复习_第1页
体积与表面积(练习)(含解析)2023年高考数学二轮复习_第2页
体积与表面积(练习)(含解析)2023年高考数学二轮复习_第3页
体积与表面积(练习)(含解析)2023年高考数学二轮复习_第4页
体积与表面积(练习)(含解析)2023年高考数学二轮复习_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

考点7-3体积与表面积1.(2023·全国·高三专题练习)已知圆锥的底面半径为1,其侧面展开图是一个圆心角为120°的扇形,则该圆锥的表面积为(

)A. B. C. D.【答案】C【分析】先求出母线长,再由圆锥的表面积公式求解即可.【详解】设圆锥的母线长为,则,解得,则该圆锥的表面积为.故选:C.2.(2022·全国·高考真题)已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为(

)A. B. C. D.【答案】A【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.故选:A.3.(2022·全国·高三专题练习)如图,一个四分之一球形状的玩具储物盒,若放入一个玩具小球,合上盒盖,可放小球的最大半径为.若是放入一个正方体,合上盒盖,可放正方体的最大棱长为,则(

)A. B. C. D.【答案】D【分析】画出截面图,设储物盒所在球的半径为,从而利用表达出小球最大半径和正方体棱长,进而求出比值.【详解】设储物盒所在球的半径为,如图,小球最大半径满足,所以,正方体的最大棱长满足,解得:,∴,故选:D.4.(2022·江西·模拟预测(文))如图,在棱长为2的正方体中,E是侧面内的一个动点,则三棱锥的体积为_________.【答案】【分析】根据三棱锥的体积公式可求出结果.【详解】点E到平面的距离为2,所以.故答案为:.5.(2022·辽宁·二模)市面上出现某种如图所示的冰激凌,它的下方可以看作一个圆台,上方可以看作一个圆锥,对该组合体进行测量,圆台下底面半径为,上底面半径为,高为,上方的圆锥高为,则此冰激凌的体积为_______.【答案】【分析】先计算圆台的体积,再计算圆锥的体积,二者相加即可.【详解】圆台的体积,圆锥的体积,总体积为,故答案为:

.6.(2022·天津·高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为,腰为3的等腰三角形,则该几何体的体积为(

)A.23 B.24 C.26 D.27【答案】D【分析】作出几何体直观图,由题意结合几何体体积公式即可得组合体的体积.【详解】该几何体由直三棱柱及直三棱柱组成,作于M,如图,因为,所以,因为重叠后的底面为正方形,所以,在直棱柱中,平面BHC,则,由可得平面,设重叠后的EG与交点为则则该几何体的体积为.故选:D.7.(2022·全国·高考真题(理))甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则(

)A. B. C. D.【答案】C【分析】设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,根据圆锥的侧面积公式可得,再结合圆心角之和可将分别用表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,则,所以,又,则,所以,所以甲圆锥的高,乙圆锥的高,所以.故选:C.8.(2022·全国·高考真题)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是(

)A. B. C. D.【答案】C【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵球的体积为,所以球的半径,设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为,又时,,时,,所以正四棱锥的体积的最小值为,所以该正四棱锥体积的取值范围是.故选:C.9.(2022·全国·高三专题练习)在三棱锥中,垂直底面,,,若三棱锥的内切球半径为,则此三棱锥的侧面积为___________.【答案】【分析】设三棱锥内切球圆心为,以为顶点将三棱锥分为四个小三棱锥,通过三棱锥体积不变即可求出三棱锥的表面积进而可求得三棱锥的侧面积.【详解】设三棱锥内切球圆心为,以为顶点将三棱锥分为四个小三棱锥,则三棱锥的体积,垂直底面,三棱锥的体积,则通过三棱锥体积不变可知,.故答案为:.10.(2022·全国·高三专题练习)中国古代的“牟合方盖”可以看作是两个圆柱垂直相交的公共部分,计算其体积所用的“幂势即同,则积不容异”是中国古代数学的研究成果,根据此原理,取牟合方盖的一半,其体积等于与其同底等高的正四棱柱中,去掉一个同底等高的正四棱锥之后剩余部分的体积(如图1所示).现将三个直径为4的圆柱放于同一水平面上,三个圆柱的轴所在的直线两两成角都相等,三个圆柱的公共部分为如图2所示的几何体,该几何体中间截面三角形边长为,则该几何体的体积为___________.【答案】##【分析】由题设求出中间截面三角形的面积,再类比体积公式求解即可【详解】根据题意,图2立体图形的一半,其体积等于与其同底等高的正三棱柱中,去掉一个与其同底等高正三棱锥之后的体积,因为该几何体中间截面三角形边长为,所以该底面积,因为圆柱的直径为4,所以该几何体一半的高为2,所以对应正三棱柱及三棱锥的高均为2,所以对应正三棱柱的体积,正三棱锥的体积,所以该几何体的体积为.故答案为:11.(2022·浙江·三模)在四棱锥中,.记三棱锥的体积分别为,四棱锥的体积分别为,则(

)A. B. C. D.【答案】C【分析】由得即可判断A,B选项;设三棱锥的体积分别为,同理得,则即可判断C,D选项.【详解】由题意知:,设到平面的距离分别为,易得,则,,则,即,则A,B错误;设三棱锥的体积分别为,设到平面的距离分别为,易得,则,,则,即,又,即,又,则C正确,D错误.故选:C.12.(2023·全国·高三专题练习)已知球O的体积为,高为1的圆锥内接于球O,经过圆锥顶点的平面截球O和圆锥所得的截面面积分别为,若,则(

)A.2 B. C. D.【答案】C【分析】根据给定条件,求出球O半径,平面截球O所得截面小圆半径,圆锥底面圆半径,再求出平面截圆锥所得的截面等腰三角形底边长及高即可计算作答.【详解】球O半径为R,由得,平面截球O所得截面小圆半径,由得,因此,球心O到平面的距离,而球心O在圆锥的轴上,则圆锥的轴与平面所成的角为,因圆锥的高为1,则球心O到圆锥底面圆的距离为,于是得圆锥底面圆半径,令平面截圆锥所得截面为等腰,线段AB为圆锥底面圆的弦,点C为弦AB中点,如图,依题意,,,,弦,所以.故选:C13.(2022·全国·高三专题练习(理))已知某正四棱锥的体积是,该几何体的表面积最小值是,我们在绘画该表面积最小的几何体的直观图时所画的底面积大小是,则和的值分别是(

)A.3; B.4; C.4; D.3;【答案】C【分析】设该正四棱锥底面边长为,高为,由体积得到,再算出侧面积和底面积,进而得到该四棱锥的表面积,然后通过基本不等式求得答案.【详解】如图,O为底面ABCD的中心,E为BC的中点,连接PO,OE,设该正四棱锥底面边长为,高为,且,由题意,.易有,,则,所以,,将代入并化简得:,于是,.当且仅当时,取“=”.易知,此时底面ABCD直观图的面积.故选:C.14.(2022·江西·新余市第一中学模拟预测(理))以为底的两个正三棱锥和内接于同一个球,并且正三棱锥的侧面与底面所成的角为45°,记正三棱锥和正三棱锥的体积分别为和,则__________【答案】##【分析】作图后由二面角的定义与勾股定理,列方程求出正三棱锥高与球的半径之比,再得两个三棱锥的高之比【详解】如图,正三棱锥和正三棱锥内接于同一个球,设到底面的距离为,到底面的距离为,则,取的中点,连接,,,记与平面的交点为,由两个正三棱锥和内接于同一个球,故一定为球的直径,记其中点为,且由题意可知,为正三角形的中心,因此,,分别为正三棱锥和正三棱锥的高,,由,,,且为的中点,可得,,,则为正三棱锥的侧面与底面所成的角为,,,记球的半径为,于是,在中,由勾股定理可得,,解得,于是,则.故答案为:15.(2022·浙江·模拟预测)在三棱锥中,顶点P在底面的投影为O,点O到侧面,侧面,侧面的距离均为d,若,.,且是锐角三角形,则三棱锥体积的取值范围为________.【答案】【分析】根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论