版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
神经网络基本原理第1页/共77页2
由于神经网络是多学科交叉的产物,各个相关的学科领域对神经网络都有各自的看法,因此,关于神经网络的定义,在科学界存在许多不同的见解。目前使用得较广泛的是T.Koholen(芬兰赫尔辛基技术大学)的定义,即"神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。"
第2页/共77页3
人脑的基本组成是脑神经细胞,大量脑神经细胞相互联接组成人的大脑神经网络,完成各种大脑功能。而人工神经网络则是由大量的人工神经细胞(神经元)经广泛互连形成的人工网络,以此模拟人类神经系统的结构和功能。
了解人脑神经网络的组成和原理,有助于对人工神经网络的理解。第3页/共77页4人工神经网络概述人体神经结构与特征虽然神经元的形态各不相同,但是都由细胞体和突起两大部分组成,而突起又分树突和轴突。第4页/共77页5轴突是由细胞体向外延伸出的所有纤维中最长的一条分枝,用来向外传递神经元产生的输出信号。每个神经元只发出一条轴突,短的仅几个微米,其最大长度可达1m以上。第5页/共77页6突触,在轴突的末端形成了许多很细的分枝,这些分枝叫神经末梢。每一条神经末梢可以与其他神经元形成功能性接触,该接触部位称为突触。每个神经元大约有103~105个突触,换句话说,每个神经元大约与103~105个其它神经元有连接,正是因为这些突触才使得全部大脑神经元形成一个复杂的网络结构。所谓功能性接触,突触的信息传递特性可变,因此细胞之间的连接强度可变,这是一种柔性连接,也称为神经元结构的可塑性,这正是神经元之间传递信息的奥秘之一。第6页/共77页7树突是指由细胞体向外延伸的除轴突以外的其他所有分支。不同的神经元其树突的数量也不同,长度较短,但数量很多,它是神经元的输入端,用于接受从其他神经元的突触传来的信号。细胞体是神经元的主体,胞体和树突表面是接受的其他神经元传来的信号的主要部位。第7页/共77页8 神经元中的细胞体相当于一个初等处理器,它对来自其他各个神经元的信号进行总体求和,并产生一个神经输出信号。由于细胞膜将细胞体内外分开,因此,在细胞体的内外具有不同的电位,通常是内部电位比外部电位低。细胞膜内外的电位之差被称为膜电位。在无信号输入时的膜电位称为静止膜电位。当一个神经元的所有输入总效应达到某个阈值电位时,该细胞变为活性细胞(激活),其膜电位将自发地急剧升高产生一个电脉冲。这个电脉冲又会从细胞体出发沿轴突到达神经末梢,并经与其他神经元连接的突触,将这一电脉冲传给相应的神经元。第8页/共77页9生物神经元的功能与特征 根据神经生理学的研究,生物神经元具有如下重要功能与特性。(1)时空整合功能
神经元对不同时间通过同一突触传入的神经冲动,具有时间整合功能。对于同一时间通过不同突触传入的神经冲动,具有空间整合功能。两种功能相互结合,使生物神经元对由突触传入的神经冲动具有时空整合的功能。
(2)兴奋与抑制状态
神经元具有兴奋和抑制两种常规的工作状态。当传入冲动的时空整合结果使细胞膜电位升高,超过动作电位的阈值时,细胞进入兴奋状态,产生神经冲动。相反,当传入冲动的时空整合结果使细胞膜电位低于动作电位阈值时,细胞进入抑制状态,无神经冲动输出。
第9页/共77页10 (3)脉冲与电位转换
突触界面具有脉冲/电位信号转化功能。沿神经纤维传递的信号为离散的电脉冲信号,而细胞膜电位的变化为连续的电位信号。这种在突触接口处进行的“数/模”转换,是通过神经介质以量子化学方式实现的如下过程:电脉冲→神经化学物质→膜电位 (4)神经纤维传导速率
神经冲动沿神经纤维传导的速度在1m/s~150m/s之间。其速度差异与纤维的粗细、髓鞘(包绕在神经元的轴突外部的物质,起绝缘作用)的有无有关。一般来说,有髓鞘的纤维,其传导速度在100m/s以上,无髓鞘的纤维,其传导速度可低至每秒数米。第10页/共77页11人脑神经系统的结构与特征
(1)记忆和存储功能
人脑神经系统的记忆和处理功能是有机地结合在一起的。神经元既有存储功能,又有处理功能,它在进行回忆时不仅不需要先找到存储地址再调出所存内容,而且还可以由一部分内容恢复全部内容。尤其是当一部分神经元受到损坏(例如脑部受伤等)时,它只会丢失损坏最严重部分的那些信息,而不会丢失全部存储信息。第11页/共77页12人脑神经系统的结构与特征
(2)高度并行性
人脑大约有1011~1012个神经元,每个神经元又有103~105个突触,即每个神经元都可以和其他103~105个神经元相连,这就提供了非常巨大的存储容量和并行度。例如,人可以非常迅速地识别出一幅十分复杂的图像。
第12页/共77页13
(3)分布式功能
人们通过对脑损坏病人所做的神经心理学研究,没有发现大脑中的哪一部分可以决定其余所有各部分的活动,也没有发现在大脑中存在有用于驱动和管理整个智能处理过程的任何中央控制部分。人类大脑的各个部分是协同工作、相互影响的,并没有哪一部分神经元能对智能活动的整个过程负有特别重要的责任。可见,在大脑中,不仅知识的存储是分散的,而且其控制和决策也是分散的。因此,大脑是一种分布式系统。第13页/共77页14
(4)容错功能
容错性是指根据不完全的、有错误的信息仍能做出正确、完整结论的能力。大脑的容错性是非常强的。例如,我们往往能够仅由某个人的一双眼睛、一个背影、一个动作或一句话的音调,就能辨认出来这个人是谁。第14页/共77页15
(5)联想功能
人脑不仅具有很强的容错功能,还有联想功能。善于将不同领域的知识结合起来灵活运用,善于概括、类比和推理。例如,一个人能很快认出多年不见、面貌变化较大的老朋友。
(6)自组织和自学习功能
人脑能够通过内部自组织、自学习能力不断适应外界环境,从而可以有效地处理各种模拟的、模糊的或随机的问题。第15页/共77页16人工神经元及人工神经网络
人工神经元的结构
如同生物学上的基本神经元,人工的神经网络也有基本的神经元。人工神经元是对生物神经元的抽象与模拟。所谓抽象是从数学角度而言的,所谓模拟是从其结构和功能角度而言的。
从人脑神经元的特性和功能可以知道,神经元是一个多输入单输出的信息处理单元,其模型如下图所示:神经元模型θx1x2xnyω1ω2ωn第16页/共77页17人工神经元及人工神经网络神经元模型θx1x2xnyω1ω2ωn第17页/共77页18人工神经元及人工神经网络M-P模型
M-P模型属于一种阈值元件模型,它是由美国心理学家McCulloch和数学家Pitts提出的最早(1943)神经元模型之一。M-P模型是大多数神经网络模型的基础。第18页/共77页19
在如图所示的模型中,x1,x2,…,xn表示某一神经元的n个输入;ωi表示第i个输入的连接强度,称为连接权值;θ为神经元的阈值;y为神经元的输出。可以看出,人工神经元是一个具有多输入,单输出的非线性器件。
神经元模型的输入是∑ωi
xi
(i=1,2,……,n)
输出是
y=f(σ)=f(∑ωi
xi
–
θ)
其中f称之为神经元功能函数(作用函数,转移函数,传递函数,激活函数)。注:可以令x0=-1,w0=θ,这样将阈值作为权值来看待。神经元模型θx1x2xnyω1ω2ωn第19页/共77页20常用的人工神经元模型
功能函数f是表示神经元输入与输出之间关系的函数,根据功能函数的不同,可以得到不同的神经元模型。常用的神经元模型有以下几种。 (1)阈值型(Threshold)
这种模型的神经元没有内部状态,作用函数f是一个阶跃函数,它表示激活值σ和其输出f(σ)之间的关系,如图5-3所示。σ
f(σ)10图
5-3阈值型神经元的输入/输出特性
第20页/共77页21 阈值型神经元是一种最简单的人工神经元。这种二值型神经元,其输出状态取值1或0,分别代表神经元的兴奋和抑制状态。任一时刻,神经元的状态由功能函数f来决定。 当激活值σ>0时,即神经元输入的加权总和超过给定的阈值时,该神经元被激活,进入兴奋状态,其状态f(σ)为1; 否则,当σ<0时,即神经元输入的加权总和不超过给定的阈值时,该神经元不被激活,其状态f(σ)为0。第21页/共77页22
(2)分段线性强饱和型(LinearSaturation)这种模型又称为伪线性,其输入/输出之间在一定范围内满足线性关系,一直延续到输出为最大值1为止。但当达到最大值后,输出就不再增大。如图5-4所示。图
5-4分段线性饱和型神经元的输入/输出特性
f(σ)σ01第22页/共77页23 (3)S型(Sigmoid)
这是一种连续的神经元模型,其输出函数也是一个有最大输出值的非线性函数,其输出值是在某个范围内连续取值的,输入输出特性常用S型函数表示。它反映的是神经元的饱和特性,如图5-5所示。σf(σ)图5-5S型神经元的输入/输出特性10第23页/共77页24
(4)子阈累积型(SubthresholdSummation)
这种类型的作用函数也是一个非线性函数,当产生的激活值超过T值时,该神经元被激活产生一个反响。在线性范围内,系统的反响是线性的,如图5-6所示。σf(σ)T01图5-6子阈累积型神经元的输入/输出特性第24页/共77页25
从生理学角度看,阶跃函数(阈值型)最符合人脑神经元的特点,事实上,人脑神经元正是通过电位的高低两种状态来反映该神经元的兴奋与抑制。然而,由于阶跃函数不可微,因此,实际上更多使用的是与之相仿的Sigmoid函数。第25页/共77页26人工神经网络
人工神经网络是对人类神经系统的一种模拟。尽管人类神经系统规模宏大、结构复杂、功能神奇,但其最基本的处理单元却只有神经元。人工神经系统的功能实际上是通过大量神经元的广泛互连,以规模宏伟的并行运算来实现的。
基于对人类生物系统的这一认识,人们也试图通过对人工神经元的广泛互连来模拟生物神经系统的结构和功能。第26页/共77页27人工神经网络
人工神经元之间通过互连形成的网络称为人工神经网络。在人工神经网络中,神经元之间互连的方式称为连接模式或连接模型。它不仅决定了神经元网络的互连结构,同时也决定了神经网络的信号处理方式。第27页/共77页28人工神经网络的分类
目前,已有的人工神经网络模型至少有几十种,其分类方法也有多种。例如: 1)按网络拓扑结构可分为层次型结构和互连型结构
2)按信息流向可分为前馈型网络与有反馈型网络;
3)按网络的学习方法可分为有教师的学习网络和无教师的学习网络;
4)按网络的性能可分为连续型网络与离散型网络,或分为确定性网络与随机型网络;第28页/共77页29神经元的模型确定之后,一个神经网络的特性及能力主要取决于网络的拓扑结构及学习方法第29页/共77页30人工神经网络的互连结构及其学习机理人工神经网络的拓扑结构
建立人工神经网络的一个重要步骤是构造人工神经网络的拓扑结构,即确定人工神经元之间的互连结构。根据神经元之间连接的拓扑结构,可将神经网络的互连结构分为层次型网络和互连型网络两大类。层次型网络结构又可根据层数的多少分为单层、两层及多层网络结构。第30页/共77页31人工神经网络的互连结构及其学习机理简单单级网……x1x2…xno1o2onwnmw11w1mw2mwn1输出层输入层 第31页/共77页32单层网络结构有时也称两层网络结构
单层或两层神经网络结构是早期神经网络模型的互连模式,这种互连模式是最简单的层次结构。1)不允许属于同一层次间的神经元互连。2)允许同一层次间的神经元互连,则称为带侧抑制的连接(或横向反馈)。此外,在有些双层神经网络中,还允许不同层之间有反馈连接。输出层x1o1w11w1mx2o2w2m………xnomwn1输入层 V第32页/共77页33多层网络结构
通常把三层和三层以上的神经网络结构称为多层神经网络结构。所有神经元按功能分为若干层。一般有输入层、隐层(中间层)和输出层。输出层隐藏层输入层o1o2om…x1x2xn………………第33页/共77页34多层网络结构
1)输入层节点上的神经元接受外部环境的输入模式,并由它传递给相连隐层上的各个神经元。
2)隐层是神经元网络的内部处理层,这些神经元再在网络内部构成中间层,由于它们不直接与外部输入、输出打交道,故称隐层。人工神经网络所具有的模式变换能力主要体现在隐层的神经元上。
3)输出层用于产生神经网络的输出模式。
较有代表性的多层网络模型有:前向网络模型、多层侧抑制神经网络模型和带有反馈的多层神经网络模型等。
第34页/共77页35多层前向神经网络
多层前向神经网络模型如图5-8所示。输入模式:由输入层进入网络,经中间各层的顺序变换,最后由输出层产生一个输出模式,便完成一次网络更新。
前向网络的连接模式不具有侧抑制和反馈的连接方式。………………………图5-8多层前向神经网络模型第35页/共77页36多层侧抑制神经网 同一层内有相互连接的多层前向网络,它允许网络中同一层上的神经元之间相互连接,如图5-9所示。这种连接方式将形成同一层的神经元彼此之间的牵制作用,可实现同一层上神经元之间的横向抑制或兴奋的机制。这样可以用来限制同一层内能同时激活神经元的个数,或者把每一层内的神经元分成若干组,让每组作为一个整体来动作。………………………图5-9多层侧抑制神经网络第36页/共77页37带有反馈的多层神经网络
这是一种允许输出层-隐层,隐层中各层之间,隐层-输入层之间具有反馈连接的方式,反馈的结果将构成封闭环路。x1o1输出层隐藏层输入层x2o2omxn…………………第37页/共77页38带有反馈的多层神经网络 这种神经网络和前向多层神经网络不同。多层前向神经网络属于非循环连接模式,它的每个神经元的输入都没有包含该神经元先前的输出,因此可以说是没有“短期记忆”的。但带反馈的多层神经网络则不同,它的每个神经元的输入都有可能包含有该神经元先前的输出反馈信息。因此,它的输出要由当前的输入和先前的输出两者来决定,这有点类似于人类短期记忆的性质。第38页/共77页39人工神经网络的运行一般分为学习和工作两个阶段。第39页/共77页40人工神经网络学习
人工神经网络最具有吸引力的特点是它的学习能力。
人工神经网络学习和记忆的心理学基础
学习和记忆是人类智能的一个重要特征。有一种观点认为,人类的学习过程实际上是一种经过训练而使个体在行为上产生较为持久改变的过程。按照这种观点,学习离不开训练。
第40页/共77页41人工神经网络学习
学习和记忆同样也应该是人工神经网络的一个重要特征。人工神经网络的学习过程就是它的训练过程。人工神经网络的功能特性由其连接的拓扑结构和突触连接强度(即连接权值)来确定。神经网络训练的实质是通过对样本集的输入/输出模式反复作用于网络,网络按照一定的学习算法自动调节神经元之间的连接强度(阈值)或拓扑结构,当网络的实际输出满足期望要求,或者趋于稳定时,则认为学习圆满结束。第41页/共77页42现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。第42页/共77页43人工神经网络的学习算法
学习算法是人工神经网络研究中的核心问题
神经网络学习算法有很多,大体可分为有导师学习(SupervisedLearning)、和无导师学习(UnsupervisedLearning)两大类,另外还有一类死记式学习。第43页/共77页44有导师学习一般需要事先收集样本数据。将数据分为训练集和检验集两部分,以保证所训练出的神经网络同时具有拟合精度和泛化能力。第44页/共77页45第45页/共77页46第46页/共77页47神经网络的学习规则
日本著名神经网络学者Amari于1990年提出一种神经网络权值训练的通用学习规则。η是一正的常量,其值决定了学习的速率,也称为学习率或学习因子;
t时刻权值的调整量与t时刻的输入量和学习信号r的乘积成正比。第47页/共77页48Hebb型学习
Hebb型学习(HebbianLearning)的出发点是Hebb学习规则如果神经网络中某一神经元同另一直接与它连接的神经元同时处于兴奋状态,那么这两个神经元之间的连接强度将得到加强。第48页/共77页49Hebb型学习
Hebb学习方式可用如下公式表示:
ωij(t+1)=ωij(t)+η[xi(t)xj(t)]
其中,ωij(t+1)表示对时刻t的权值修正一次后的新的权值;xi(t)、xj(t)分别表示t时刻神经元i(输入)和神经元j(输出)的状态。上式表明,权值的调整量与输入输出的乘积成正比。此时的学习信号即输出信号。这是一种纯前馈、无导师学习。该规则至今仍在各种神经网络模型中起着重要作用。
第49页/共77页50误差修正学习规则(也称感知器学习规则)
误差修正学习(Error-CorrectionLearning)是一种有导师的学习过程,其基本思想是利用神经网络的期望输出与实际之间的偏差作为连接权值调整的参考,并最终减少这种偏差。
最基本的误差修正规则规定:连接权值的变化与神经元希望输出和实际输出之差成正比。
第50页/共77页51误差修正学习规则(也称感知器学习规则)
该规则的连接权的计算公式为:
ωij(t+1)=ωij(t)+η[dj(t)-yj(t)]xi(t)
其中,ωij(t)表示时刻t的权值;ωij(t+1)表示对时刻t的权值修正一次后的新的权值;dj(t)为时刻t神经元j的希望输出,yj(t)为与i直接连接的另一神经元j在时刻t的实际输出;dj(t)-yj(t)表示时刻t神经元j的输出误差。
第51页/共77页52δ(Delta)学习规则
δ学习规则很容易从输出值与希望值的最小平方误差导出来。第52页/共77页53感知器模型及其学习(自学习模型)
感知器是美国心理学家罗森勃拉特于1958年为研究大脑的存储、学习和认知过程而提出的一类具有自学习能力的神经网络模型。最初的感知器只有一个神经元,实际上仍然是M-P模型的结构,但是它与M-P模型的区别在于神经元之间连接权的变化。通过采用监督学习来逐步增强模式划分的能力,达到所谓学习的目的。感知器研究中首次提出了自组织、自学习的概念,对神经网络的研究起到重要的推动作用,是研究其他网络的基础。
第53页/共77页54感知器模型及其学习(自学习模型)
感知器模型
感知器是一种具有分层结构的前向网络模型,它可分为单层、两层及多层结构。 感知器中的神经网络是线性阈值单元。当输入信息的加权和大于或等于阈值时,输出为1,否则输出为0或-1。神经元之间的连接权ωi是可变的,这种可变性就保证了感知器具有学习的能力。第54页/共77页55B-P网络及其学习误差反向传播(ErrorBackPropagation):美国加州大学的鲁梅尔哈特(Rumelhart)和麦克莱兰(Meclelland)等学者继续深入研究了感知器模型,他们抓住信息处理中的并行性和分布性这两个本质概念,1985年提出了一个神经网络反向传播模型,简称为B-P模型,这个模型既实现了明斯基(Minsky)所提出的多层网络的设想,又突破了感知器的一些局限性。第55页/共77页56B-P网络及其学习
BP模型利用输出后的误差来估计输出层的直接前导层的误差,再利用这个误差估计更前一层的误差。如此下去,获得所有其他各层的误差估计。形成将输出表现出来的误差沿着与输入信号传送相反的方向逐级向网络的输入端传递的过程,因此称为后向传播(B-P)算法。第56页/共77页57B-P网络及其学习BP模型不仅有输人层节点、输出层节点,而且有一层或多层隐含节点。层与层之间多采用全互连方式,但同一层的节点之间不存在相互连接。………………………第57页/共77页58B-P网络的学习过程是由正向传播和误差反向传播组成的。当给定网络一组输入模式时,B-P网络将依次对这组输入模式中的每个输入模式按如下方式进行学习:把输入模式从输入层传到隐含层单元,经隐含层单元逐层处理后,产生一个输出模式传至输出层,这一过程称为正向传播。第58页/共77页59如果经正向传播在输出层没有得到所期望的输出模式,则转为误差反向传播过程,即把误差信号沿原连接路径返回,并通过修改各层神经元的连接权值,使误差信号为最小。重复正向传播和反向传播过程,直至得到所期望的输出模式为止。第59页/共77页60BP网络除了在多层网络上与单层感知器不同外,其主要差别也表现在激活函数上。BP网络的激活函数必须是处处可微的,因此它不能采用二值型的阀值函数{0,1}或符号函数{-1,1}BP网络经常使用的是S型的对数或正切激活函数和线性函数第60页/共77页61B-P网络的学习算法: (1)初始化网络及学习参数,即将隐含层和输出层各节点的连接权值、神经元阈值赋予[-1,1]区间的一个随机数。
(2)提供训练样本,即从训练样本集合中选出一个训练样本,将其输入和期望输出送入网络。
(3)正向传播过程,即对给定的输入,从第一隐含层开始,计算网络的输出,并把得到的输出与期望输出比较,若有误差,则执行第(4)步;否则,返回第(2)步,提供下一个训练模式;
(4)反向传播过程,即从输出层反向计算到第一隐含层,逐层修正各单元的连接权值。
(5)返回第(2)步,对训练样本集中的每一个训练样本重复第(2)到第(3)步,直到训练样本集中的每一个样本都满足期望输出为止。第61页/共77页62函数名功能newff()生成一个前馈BP网络tansig()双曲正切S型(Tan-Sigmoid)传输函数logsig()对数S型(Log-Sigmoid)传输函数traingd()梯度下降BP训练函数MATLAB中BP神经网络的重要函数和基本功能第62页/共77页63MATLAB中BP神经网络的重要函数和基本功能newff()功能建立一个前向BP网络格式
net=newff(PR,[S1S2...SN1],{TF1TF2...TFN1},BTF,BLF,PF)说明
net为创建的新BP神经网络;PR为网络输入取向量取值范围的矩阵;[S1S2…SNl]表示网络隐含层和输出层神经元的个数;{TFlTF2…TFN1}表示网络隐含层和输出层的传输函数,默认为‘tansig’;BTF表示网络的训练函数,默认为‘trainlm’;BLF表示网络的权值学习函数,默认为‘learngdm’;PF表示性能数,默认为‘mse’。第63页/共77页64MATLAB中BP神经网络的重要函数和基本功能tansig()功能正切sigmoid激活函数格式
a=tansig(n)说明双曲正切Sigmoid函数把神经元的输入范围从(-∞,+∞)映射到(-1,1)。它是可导函数,适用于BP训练的神经元。logsig()功能对数Sigmoid激活函数格式
a=logsig(N)说明对数Sigmoid函数把神经元的输入范围从(-∞,+∞)映射到(0,1)。它是可导函数,适用于BP训练的神经元。第64页/共77页65net.trainParam.epochs:最大训练步数。不过当误差准则满足时,即使没达到此步数也停止训练。缺省为100。net.trainParam.goad:网络误差准则,当误差小于此准则时停止训练,缺省为0。net.trainFcn:训练算法。缺省为’trainlm’,即Levenberg-Marquardt算法。还可使用‘traingdx’,即带动量的梯度下降算法;’traincgf’,即共轭梯度法。其它可看matlab帮助:help->contents->NeuralNetworkToobox->NetworkObjectReference;help(net.trainFcn)(1)MATLAB中BP神经网络的重要函数和基本功能第65页/共77页66第66页/共77页67
例下表为某药品的销售情况,月份123456销量205623952930229816341600月份789101112销量187314781900150020461556现构建一个如下的三层BP神经网络对药品的销售进行预测:输入层有三个结点,隐含层结点数为5,隐含层的激活函数为tansig;输出层结点数为1个,输出层的激活函数为logsig,并利用此网络对药品的销售量进行预测,预测方法采用滚动预测方式,即用前三个月的销售量来预测第四个月的销售量,如用1、2、3月的销售量为输入预测第4个月的销售量,用2、3、4月的销售量为输入预测第5个月的销售量.如此反复直至满足预测精度要求为止。BP神经网络在分类与预测中的应用第67页/共77页68BP神经网络在分类与预测中的应用%以每三个月的销售量经归一化处理后作为输入P=[0.5152 0.8173 1.0000;0.8173 1.0000 0.7308;1.0000 0.7308 0.1390;0.7308 0.1390 0.1087;0.1390 0.1087 0.3520;0.1087 0.3520 0.1065;]';%以第四个月的销售量归一化处理后作为目标向量T=[0.73080.13900.10870.35200.10650.3761];%创建一个BP神经网络,每一个输入向量的取值范围为[0,1],隐含层有5个神经%元,输出层有一个神经元,隐含层的激活函数为tansig,输出层的激活函数为%logsig,训练函数为梯度下降函数.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024水箱安全检测与销售服务合作协议3篇
- 2025年度销售合同终止及市场拓展合作管理协议2篇
- 个体工商户商铺租赁标准协议模板版A版
- 2024年度商铺离婚协议及企业经营权转让与风险分担合同3篇
- 二零二五年豪华二手车经销合作框架合同2篇
- 二零二五年砂石料买卖协议3篇
- 2024标准窗帘买卖合同样本版B版
- 二零二五版25MW柴油发电机电站发电设备安装调试服务协议3篇
- 西安明德理工学院《项目管理与案例分析》2023-2024学年第一学期期末试卷
- 2024版家政服务三方合同范本
- 心理学专业知识考试参考题库500题(含答案)(一)
- 2024年浙江高考技术试题(含答案)
- 资管行业投研一体化建设
- 提高保险公司客户投诉处理能力的整改措施
- 物业费收取协议书模板
- 电工(中级工)理论知识练习题(附参考答案)
- 工业设计概论试题
- 起重机的维护保养要求与月度、年度检查记录表
- 消防设施维护保养记录表
- 城区生活垃圾填埋场封场项目 投标方案(技术方案)
- 垃圾分类巡检督导方案
评论
0/150
提交评论