




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
实验安排时间地点人物第1页,共96页,2023年,2月20日,星期六第12章非线性电路指在电路中含有非线性元件的电路。从严格的意义上讲一切实际电路器件都是非线性的,只是对于那些非线性程度相对较弱的器件或是仅应用器件的线性部分工作的电路而言,可采用线性电路模型进行分析;而当器件的非线性特性不容忽略或是需要利用器件的非线性特性时,则应采用非线性电路模型进行分析。本章简要介绍非线性电路的基本概念和分析方法。非线性电路基础第2页,共96页,2023年,2月20日,星期六教学要点非线性电阻元件,简单的非线性电阻电路分析,非线性电阻电路的静态工作点和负载线、分段线性化方法;非线性电容元件的库——库伏特性;非线性电感元件的磁通链——电流特性;非线性电路方程的编写;小信号分析法;含有二极管的电路。教学提示
充分掌握非线性电阻元件,简单的非线性电阻电路分析;充分掌握小信号分析法分析含有非线性电阻元件的电阻电路的方法;本章的其他知识一般了解。第3页,共96页,2023年,2月20日,星期六homework12-2,12-3,12-4,12-5,12-7,12-12。第4页,共96页,2023年,2月20日,星期六12.1非线性元件12.2非线性电阻电路分析12.3含二极管电路12.4非线性动态电路12.5应用第12章非线性电路基础第5页,共96页,2023年,2月20日,星期六12.1、非线性元件对于具有非线性特性的电路器件,应采用非线性元件模型来描述。与线性元件相比较,描述非线性元件要复杂得多,通常需要借助于图形,通过非线性元件相应的特性曲线来讨论元件的性质。相对于非线性ui特性、uq特性或Ψi特性的元件,就是非线性电阻元件、电容元件或电感元件。
第6页,共96页,2023年,2月20日,星期六12.1.1非线性电阻元件电阻元件特性由ui平面的伏安特性描述,凡是不满足欧姆定律的电阻元件就是非线性电阻,图12-1示出了几种典型非线性电阻元件的伏安特性,图12-1(a)为非线性电阻的符号。
图12-1非线性电阻伏安关系第7页,共96页,2023年,2月20日,星期六1、非线性电阻的特点(1-观察)图12-1(c)所示电阻元件的伏安特性为电阻元件两端的电压是流过其电流的单值函数,由其特性曲线可见,流过该电阻元件的每一个电流对应于一个确定的电压值,但是,对应于同一个电压,电流可能是多个值。称这类非线性电阻元件为电流控制型电阻,图12-1(c)就是电流控制型电阻元件典型的伏安特性曲线。
图12-1非线性电阻伏安关系u=f(i)
图12-1(d)所示电阻元件的伏安特性为流过电阻元件的电流是其两端电压的单值函数,由图可见,在特性曲线上,对应于该电阻元件两端的电压值,有且仅有一个电流值与之对应,但是,对应于同一个电流,电压可能是多个值。称这类非线性电阻元件为电压控制型电阻,图12-1(d)就是电压控制型电阻元件典型的伏安特性曲线。
i=g(u)第8页,共96页,2023年,2月20日,星期六非线性电阻的特点(2-比较-与线性电阻)线性电阻接入电路中时不需要考虑元件的方向,而非线性电阻通常要考虑元件的方向。
由图12-1示出的几种典型非线性电阻元件的伏安特性可见:一般非线性电阻元件不满足特性曲线对称坐标原点,所以多数非线性电阻元件是单向性的。线性电阻的伏安特性曲线为对称于坐标原点的直线,所以是双向性的。图12-1非线性电阻伏安关系第9页,共96页,2023年,2月20日,星期六2、非线性电阻参数-静态、动态电阻由于非线性电阻元件伏安特性的非线性,所以非线性电阻不能像线性电阻那样用常数表示电阻值。对于非线性电阻元件通常引用静态电阻和动态电阻的概念。
非线性电阻元件在某一工作状态下的静态电阻定义为该点的电压与电流之比
点Q称为此时该非线性电阻的工作点。UQ称为工作点电压,IQ称为工作点电流。
非线性电阻元件在某一工作点Q的动态电阻为该点的电压对电流的导数
可见,无论是静态电阻还是动态电阻都与电路工作状态有关。
第10页,共96页,2023年,2月20日,星期六例12-1解:设某非线性电阻的伏安特性为u
=20i+0.5i2。求(1)i1=1A,i2=2A时所对应的电压u1、u2。(2)i3=i1+i2时所对应的电压u3。(3)i
=2cosωt时所对应的电压u。(3)i
=2cosωt时,u1=202cosωt+0.522cos2ωt=1+40cosωt+cos2ωtV显然,u3u1+u2,(2)i3=i1+i2时,u3=20(i1+i2)+0.5(i1+i2)2=203+0.532=64.5V(1)i1=1A时,
u1=20i1+0.5i12=201+0.512=20.5Vi2=2A时,
u2=20i2+0.5i22=202+0.522=42V即叠加定理不适用于非线性电阻。第11页,共96页,2023年,2月20日,星期六12.1.2、非线性电容1、特点2、参数静态电容C定义为非线性电容在某一工作点Q上的电荷与电压之比,动态电容Cd定义为非线性电容在某一工作点Q上的电荷对电压的导数,动态电容Cd又称为增量电容。
电压控制型电容
q=f(u)
电荷控制型电容
u=g(q)关联参考方向时第12页,共96页,2023年,2月20日,星期六12.1.3、非线性电感1、特点电流控制型电感
Ψ=f(i)
磁链控制型电感
i=g(Ψ)2、参数非线性电感元件同样具有静态电感L和动态电感Ld之分,如图(b)所示3、磁滞回线
图(c)所示为电子技术中常使用的铁芯、磁芯电感的Ψi特性,通常称为磁滞回线,其既非流控又非磁控,曲线对I、对Ψ都是多值函数。
第13页,共96页,2023年,2月20日,星期六12.2非线性电阻电路仅由非线性电阻元件、线性电阻元件、独立电源以及受控源组成的电路称为非线性电阻电路。
分析非线性电路的基本依据仍是KCL、KVL和元件的伏安关系。KCL、KVL仅与电路连接的结构有关,而与所连接元件的特性无关,所以,由KCL、KVL所列出的仍是线性方程。
表征元件约束的元件伏安特性中,对于线性元件是线性方程,对于非线性电阻元件则是非线性方程。求解一般非线性方程的解析解很困难,通常可借助于计算机求解非线性方程的数值解。如电路中仅有一个非线性元件、多个非线性元件可等效化简、非线性元件具有分段折线性以及在小信号工作条件下等,可采用较简单的方法求解非线性电路。
第14页,共96页,2023年,2月20日,星期六12.2.1、含一个非线性元件的电路含一个非线性元件的电路及图解可以把电路中除了非线性元件之外的线性电路部分视为一个线性含源一端口网络,利用戴维南定理将其等效化简为电压源串联电阻支路。
然后联立两个方程i=g(u)
u=uoc
R0i求解静态工作点或图解曲线相交第15页,共96页,2023年,2月20日,星期六12.2.2、非线性电阻的串联/并联1、串联适用都是单调型或流控型电阻则两电阻串联后满足
u=f1(i1)+f2(i2)=f1(i)+f2(i)=f
(i)串联后,等效于一个单调型或流控型非线性电阻。
若非线性电阻中有一个为压控型,则串联后的等效电阻无法写出如上式的解析式,此时可利用图解法求出串联等效电阻的伏安特性如图(c)所示。
第16页,共96页,2023年,2月20日,星期六2、非线性电阻的并联并联适用都是单调型或压控型电阻两电阻并联后满足
i=g1(u1)+g2(u2)=g1(u)+g2(u)=g
(u)
若非线性电阻中有一个为流控型,则并联后的等效电阻无法写出如上式的解析式,与非线性电阻的串联类似,可采用图解法求出等效电阻的伏安特性。
第17页,共96页,2023年,2月20日,星期六12.2.3、分段线性化
--非线性伏安特性的直线近似某一非线性电阻伏安特性曲线近似于直线区域的一段,当电路工作在此区域时,此非线性电阻伏安特性可用一条直线来近似代替这一段曲线。即在此区域工作的非线性电阻的特性可由下式直线方程表示:u=U0+Rdi从而把非线性电阻支路转化为线性含源支路。近似线性化后,就可按照线性电路的计算方法进行分析计算了。这种方法称为近似线性化法,也称直线近似法。
第18页,共96页,2023年,2月20日,星期六12.2.3、分段线性化--简介举例在0<i<IB区间,曲线AB段可近似用斜率为1/RAB的直线AB代替,该直线方程为u=RAB
i0<i<IB直线AB过坐标原点,其可等效为一线性电阻
第19页,共96页,2023年,2月20日,星期六在IB<i<IC区间,曲线BC段可近似用u轴截距为UBC、斜率为负1/RBC的直线BC代替,该直线方程为
u=RBC
i+UBC
IB<i<IC等效为一线性电压源串联一个负电阻支路
在i>IC区间,曲线CD段可近似用u轴截距为UCD、斜率为1/RCD的直线CD代替,该直线方程为
u=RCD
i+UCD
i>IC其可等效为一线性含源支路
第20页,共96页,2023年,2月20日,星期六例12-2解:由图(b)可得图示电路(a)中,非线性电阻的伏安特性及其分段线性化折线逼近情况如图(b)所示。求回路电流i。得AP段PB段
i=2.315A
第21页,共96页,2023年,2月20日,星期六12.2.4、小信号分析法
如果电路中,信号变化幅度很小,则可围绕某一工作点上建立一个局部的近似线性模型:从而把非线性电路转化为线性电路来分析计算;这是在电子电路中用来分析非线性电路的重要方法之一,称为小信号分析法,又称局部线性化近似法。
第22页,共96页,2023年,2月20日,星期六原理
U0+us=R(IQ+i)+UQ+u
IQ+i
=g(UQ+u)在u
=UQ处将g(u)展开为泰勒级数:
由于u足够小,略去高阶项,且IQ=g(UQ),
(c)小信号分析图解0uiQUQIQU0U0/Ri=g(u)
第23页,共96页,2023年,2月20日,星期六小信号分析法过程如图(a)所示含一个非线性元件电路,电路线性部分可用戴维南定理等效为一电压源us串联电阻R支路,其中电源电压us在一恒定电压U0上有一个微小变化量us,us满足us<<U0。对于给定的这一电路,us会使电路中的各电压、电流产生相应的变化。如图(a)所示,电源电压us:us=U0+us由电路两类约束条件,可列电路方程
第24页,共96页,2023年,2月20日,星期六小信号分析法过程(续1)当us=0,即电路中仅有直流电源作用时,由上式可得
i=g(u)两式联立求解,即可求得电路的工作点Q,如图(c)所示。
A用大信号求解静态工作点第25页,共96页,2023年,2月20日,星期六小信号分析法过程(续2)B仅存在小信号作用时,作小信号等效电路图1、在静态工作点u
=UQ
处,求取动态电导或电阻的参数2、作小信号等效电路图:计算(b)等效电路+_R+_uuird非线性电阻在小信号等效电路中被静态工作点处的动态电阻rd所代替
非线性电路问题转化为线性问题进行求解
第26页,共96页,2023年,2月20日,星期六小信号分析法过程(续3)C最后合成总的电路响应--既有小信号又有大信号把A、B求得的大信号(UQ、IQ)和小信号合成为最后所求。第27页,共96页,2023年,2月20日,星期六例用小信号分析法求图中电压u。直流电压源U0=10V,其中干扰的小信号,已知非线性电阻的伏安特性为电路图+_2+_uSuiU0+_us解:1、求大信号时工作点2、求动态电阻,作小信号等效电路图等效电路+_R+_usuird3、求并合成最后的结果。第28页,共96页,2023年,2月20日,星期六12.3含二极管电路实际二极管第29页,共96页,2023年,2月20日,星期六理想二极管理想二极管相当于电子开关,加正向偏置时导通,加反向偏置时断开。其这一特性在许多场合得以应用,是一个非常有用的元件模型。
第30页,共96页,2023年,2月20日,星期六PN结二极管第31页,共96页,2023年,2月20日,星期六二极管等效电路模型第32页,共96页,2023年,2月20日,星期六例12-3图示电路中,二极管采用图(a)所示恒压降模型时的导通电压Uon=0.7V;二极管采用图(b)所示折线模型的开启电压Ut=0.5V,导通电阻R=200。当电压源U=9V和U=1V时,分别用理想二极管模型、恒压降模型和折线模型求流过二极管的电流。
第33页,共96页,2023年,2月20日,星期六解:当U=9V时:采用图12-16(b)的理想二极管模型,则采用图12-16(c)的恒压降模型,则采用图12-16(d)的折线模型,则
当U=1V时:采用图12-16(b)的理想二极管模型,则采用图12-16(c)的恒压降模型,则采用图12-16(d)的折线模型,则
第34页,共96页,2023年,2月20日,星期六稳压二极管
注意区别第35页,共96页,2023年,2月20日,星期六隧道二极管第36页,共96页,2023年,2月20日,星期六充气二极管第37页,共96页,2023年,2月20日,星期六例12-4解:如图(a)所示电路,求流过理想二极管的电流iD及6k电阻支路的电流i。
解得u
=3V,所以等效电路如图(b)所示,如图(a)所示电路,理想二极管视为短路断开理想二极管支路,求戴维南等效电路。有第38页,共96页,2023年,2月20日,星期六例12-5解:
如图电路中,当电压u1、u2分别为5V或0V时,求A点的电位uA。
u1
u2二极管工作状态
uA
VD1
VD20V0V0V5V5V0V5V5V
导通导通截止导通
导通截止导通导通0V0V0V5V第39页,共96页,2023年,2月20日,星期六二极管双向限幅电路第40页,共96页,2023年,2月20日,星期六*12.4非线性动态电路一阶非线性动态电路式中,u=f(iR)
一阶自治方程一般一阶非线性动态电路的非线性微分方程
第41页,共96页,2023年,2月20日,星期六动态电路平衡点及其稳定性第42页,共96页,2023年,2月20日,星期六RLC电路相平面第43页,共96页,2023年,2月20日,星期六12.5应用——整流滤波电路直流稳压电源基本组成方框图第44页,共96页,2023年,2月20日,星期六二极管整流电路与波形第45页,共96页,2023年,2月20日,星期六桥式整流滤波电路与输出波形第46页,共96页,2023年,2月20日,星期六三端线性集成稳压器W7800第47页,共96页,2023年,2月20日,星期六线性直流稳压电源电路实际线性直流稳压电源第48页,共96页,2023年,2月20日,星期六homework12-2,12-3,12-4,12-5,12-7,12-12。第49页,共96页,2023年,2月20日,星期六谢谢!第50页,共96页,2023年,2月20日,星期六他山之石相关教材中的本章介绍第51页,共96页,2023年,2月20日,星期六只含电阻元件的电路称为电阻电路,如果电阻元件都是线性的,则称为线性电路,否则便是非线性电阻电路。分析非线性电阻电路的基本依据仍然是KVLKCL和元件伏安关系。第52页,共96页,2023年,2月20日,星期六12.1
非线性电阻元件如果电阻元件的电压电流关系曲线不是i-u平面上通过原点的直线,称之为非线性电阻元件。例如下图是一非线性电阻的伏安关系曲线。第53页,共96页,2023年,2月20日,星期六为便于分析具有非线性电阻元件的电路,我们可以定义一个称之为理想二极管的模型。此理想二极管的特性如下图理想二极管及其伏安特性曲线第54页,共96页,2023年,2月20日,星期六理想二极管的特性可解析为对所有的对所有的也就是说:正向偏置时,好比一个闭合开关,起短路的作用,电阻为零;反向偏置时,好比一个打开的开关,起开路的作用,电阻为无限大。第55页,共96页,2023年,2月20日,星期六例、求图13-1-1电路中理想二极管的电流。图13-1-1我们先把含二极管的支路断开,求得电路其余部分得戴维南等效电路后,再把含二极管的支路接上。在一个简单的单回路中,很容易判断二极管是否导通。第56页,共96页,2023年,2月20日,星期六图5-1-2在图13-1-1电路中除理想二极管支路以外,电路的其余部分如图13-1-2所示,其等效电路可求得如下:第57页,共96页,2023年,2月20日,星期六图13-1-3(a)(b)等效电路如图5-1-3(a)所示,把理想变压器支路与这等效电路接上后,即得13-1-3(b)。可知二极管阴极电位比阳极电位高2.4V,因此二极管不能导通,I=0。第58页,共96页,2023年,2月20日,星期六12.2非线性电阻的串联和并联
对于含多个非线性电阻的电路,可以按情况分解为线性单口网络和非线性单口网络两部分,且非线性单口由非线性电阻(也可包含若干线性电阻)按串联或并联或串-并联方式构成。第59页,共96页,2023年,2月20日,星期六
设已知各非线性电阻的伏安特性曲线,我们就可以用图解法来解决这个问题。设有两个非线性电阻(例如两个二极管)串联,如图5-2-1(a)所示,它们的特性曲线部分分别如图(b)中曲线D1,D2所示。我们现在要确定它们串联后的特性曲线,亦即串联等效电阻的特性曲线。
一、非线性电阻的串联第60页,共96页,2023年,2月20日,星期六图13-2-1(a)(b)第61页,共96页,2023年,2月20日,星期六由KVL及KCL可知,在图(a)所示串联电路中因此只要对每一个特定的电流i,我们把它在D1和D2特性曲线索对应的电压值u1和u2相加,便可得到串联后的特性曲线,如图(b)中所示。根据等效的定义,这条曲线也就是串联等效电阻的特性曲线。如果已知线性网络N的戴维南等效电路,我们就可以用5-1所述的方法解得u和I,进一步求得整个电路各部分的电压和电流。第62页,共96页,2023年,2月20日,星期六二、非线性电阻的并联图13-2-2(a)(b)第63页,共96页,2023年,2月20日,星期六对含有非线性电阻并联的电路问题,也可作为类似的处理。设电路如图13-2-2(a)所示,两非线性电阻的伏安特性曲线分别如图(b)中曲线D1,D2所示.由KCL及KVL可知,在该电路中因此只要对每一个特定的电压u,我们把它在D1和D2特性曲线上所对应的电流值i1,i2相加,便可得到并联后的特性曲线,如图(b)中粗线所示.根据等效的定义,这条曲线也就是并联等效电阻的特性曲线。运用5-1所述的方法可解得u和I,并进一步求得整个电路各部分的电压和电流第64页,共96页,2023年,2月20日,星期六例:图13-2-3(a)表示一个电压源,一个线性电阻和一个理想二极管的串联电路,试绘出这一串联电路的特性曲线。图13-2-3(a)(b)(c)第65页,共96页,2023年,2月20日,星期六解:这三个元件的特性曲线分别如图(b)中曲线1.2.3所示。理想二极管的特性只是表明:当电压为负时,I=0;当I为正时,电压为零。也就是这一元件对任何正向电流,相当于短路;而当电压为负时,相当于开路。因此,在求等效特性曲线时,当电流为正值时,可把1.3两特性曲线的横坐标相加。由于电流不可能负值,于是电路的特性曲线如图(c)所示。第66页,共96页,2023年,2月20日,星期六12.3非线性电阻电路的方程*分析非线性电路的基本依据是KCL、KVL和元件的伏安关系。
*基尔霍夫定律所反映的是节点与支路的连接方式对支路变量的约束,而与元件本身特性无关,因而无论是线性的还是非线性的电路,按KCL和KVL所列方程是线性代数方程。第67页,共96页,2023年,2月20日,星期六例:如图电路,节点a和b可列出KCL方程为对于回路I和II,按KVL可列得方程它们都是线性代数方程。表征元件特性的伏安方程,对于线性电阻而言是线性代数方程,对于非线性电阻来说则是非线性函数。IS+u4-R1R4R2R3i4i1i2i3ab+u2-+u3-+u1-III第68页,共96页,2023年,2月20日,星期六如例图中,对于线性电阻R1、R2有对于非线性电阻R2(设其为压控型的)和R3(设其为流控型的)有以上这些方程构成非线性方程组。由于非线性电阻的伏安方程是非线性函数,一般很难用解析的方法求解,我们只能用适当的解析步骤消去一些变量,减少方程数目,然后,用非解析的方法,如数值法、图解法、分段线性化法等,求出其答案。第69页,共96页,2023年,2月20日,星期六图5.4-1的电路由直流电压源US、线性电阻R和非线性电阻Rn组成。如果把US与R的串联组合看作是一端口电路,按图示的电压、电流参考方向有设非线性电阻Rn的伏安特性为用图解法,式(13.4-1)和式(13.4-2)分别为u-i平面的两条曲线,而这两条曲线的交点就是这两个方程组成的方程组的解。iRUSRn+u-图5.4-112.4图解分析法第70页,共96页,2023年,2月20日,星期六交点Q(U0,I0)称为电路的工作点。I00U0u(V)Q两条曲线的交点图求静态工作点i(mA)u=Us-Rii=g(u)第71页,共96页,2023年,2月20日,星期六分段线性化法(分段线性近似法)也称折线法,它是将非线性元件的特性曲线用若干直线段来近似地表示,这些直线段都可写为线性代数方程,这样就可以逐段地对电路作定量计算。如可将某非线性电阻的伏安特性(见图(a)中的虚线)分为三段,用1、2、3三条直线段来代替。这样,在每一个区段,就可用一线性电路来等效。(a)12.5分段线性化分析法第72页,共96页,2023年,2月20日,星期六在区间如果线段1的斜率为,则其方程可写为就是说,在的区间,该非线性电阻可等效为线性电阻,如图(b)。类似地,若线段2的斜率为,(显然有<0),它在电压轴的截距为,则其方程为式中其等效电路如图(c)。第73页,共96页,2023年,2月20日,星期六若线段3的斜率为,它在电压轴的截距为,则其方程为式中其等效电路如图(d)。当然,各区段的等效电路也可用诺顿电路。将非线性元件的特性曲线分段后,就可按区段列出电路方程,用线性电路的分析计算方法求解。第74页,共96页,2023年,2月20日,星期六(b)线段1的等效电路(c)线段2的等效电路(d)线段3的等效电路分段线性化的方法是:用折线近似替代非线性电阻的伏安特性曲线;确定非线性电阻的线性化模型。第75页,共96页,2023年,2月20日,星期六分析非线性电路时,虽然可以用分段线性化模型(如理想二极管)来近似地表征某些非线性元件,然而从整体看,从全局看仍然是非线性的。使用这种全局(global)模型分析电路,电路的电压和电流可以允许在大范围内变化,称为大信号分析。在某些电子电路中信号的变化幅度很小,在这种情况下,可以围绕任何工作点建立一个局部(local)线性模型。对小信号来说,可以根据这种线性模型运用线性电路的分析方法来进行研究。这就是“非线性电路的小信号分析”。12.6小信号分析法第76页,共96页,2023年,2月20日,星期六图(a)的电路中,为直流电压源(常称为偏置);为时变电压源(信号源),并且设对于所有的时间t,R为线性电阻;非线性电阻为压控型,设其伏安特性可表示为(见图(b))。(a)(b)第77页,共96页,2023年,2月20日,星期六对图(a)的电路,按KVL有首先设即信号电压为零。这时可用图解法作出负载线L,求得工作点如图(b)。当时,对人一时刻t满足方程式(1)的所有点的轨迹是图(b)中平面的一条平行于L的直线(如虚线所示)。所以,凡位于各直线与特性曲线的交点的值,就是不同时刻方程组(1)和(2)的解。(1)式中(2)第78页,共96页,2023年,2月20日,星期六由于足够小,所以必定位于工作点附近。把各分成两部分,写成}(3)式中和是工作点的电压和电流,而和是小信号引起的增量。考虑到非线性电阻的特性,将(3)代入式(2)得(4)第79页,共96页,2023年,2月20日,星期六由于也足够小,将上式等号右端用泰勒级数展开,取其前两项作为近似值,得由于故得式中是非线性电路特性曲线在工作点处的斜率,或者说,是工作点处特性曲线切线的斜率。(5)(6)第80页,共96页,2023年,2月20日,星期六由于(7)是非线性电阻在工作点处的动态电导(为动态电阻)。这样,式(6)可写为或由于是常数,所以上式表明,由小信号引起的电压与电流之间是线性关系。将式(3)代入式(1)得第81页,共96页,2023年,2月20日,星期六考虑到故得在工作点处,有故有上式是一个线性代数方程,据此可以作出非线性电阻在工作点处的小信号等效电路,如图(c)所示。于是,可以求得第82页,共96页,2023年,2月20日,星期六这样,在小信号情况下(),可以把非线性电路问题归结为线性电路问题来求解。(c)小信号等效电路第83页,共96页,2023年,2月20日,星期六小信号分析法的求解步骤在图(a)所示电路中,ab左端为线性支路,为小信号(对所有t,有)时变电压源,计算响应、的小信号分析法的过程是:(a)含小信号的非线性电阻电路第84页,共96页,2023年,2月20日,星期六(1)确定非线性电阻的静态工作点令图(a)中的小信号置零后的电路如图(b)所示,用图解法(或解析法)确定静态工作点。(b)确定静态工作点的电路第85页,共96页,2023年,2月20日,星期六(2)计算非线性电阻在静态工作点的动态电阻(或动态电导)(3)画出小信号等值电路,计算动态响应小信号等值电路如图(c)所示
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 封面制作比赛课件
- 地震反演技术课件
- 九年级下学期思想品德课教学工作总结
- 人事部个人上半年工作总结
- 2025公寓复杂房屋装修合同
- 2025年上海市新劳动合同范本(合同版本)
- 瑜伽老师合作合同范本
- 疫情防控安全教育课件
- 周年庆活动方案(8篇)
- 公司多人投资合同标准文本
- 数学-广东省广州市2025届高三一模试题和解析
- 地理空间分析与建模课件
- 新人教版八年级下册初中物理全册教学课件
- 幼儿绘本故事:如果不吃青菜
- 小班音乐歌唱《小鸡抓虫》原版动态PPT课件
- 二次函数图像平移-对称与旋转.pptx
- 精装土建移交管理办法
- 《货币金融学》
- 施工现场总平面布置图(共23页)
- 农村土地承包经营权流转申请登记表
- 小学生课堂常规(课堂PPT)
评论
0/150
提交评论