药用高分子材料详解演示文稿_第1页
药用高分子材料详解演示文稿_第2页
药用高分子材料详解演示文稿_第3页
药用高分子材料详解演示文稿_第4页
药用高分子材料详解演示文稿_第5页
已阅读5页,还剩166页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

药用高分子材料详解演示文稿1现在是1页\一共有171页\编辑于星期三(优选)药用高分子材料2现在是2页\一共有171页\编辑于星期三

近一个多世纪以来,通过有机合成的方法获得了大量的低分子药物,为推动全球医疗事业起了巨大的作用,在医学史上有着不可磨灭的贡献。但是,低分子药物却同时存在着很大的副作用。此外,低分子药物在生物体内新陈代谢速度快,半衰期短,易排泄,因而在发病期间要频繁进药。过高的药剂浓度常常带来过敏、急性中毒和其他副作用。另一方面,低分子药物对进入体内指定的部位也缺乏选择性,这也是使进药剂量增多、疗效较低的原因之一。3现在是3页\一共有171页\编辑于星期三

在这种背景下,药用高分子的研究受到了人们的重视。高分子药物具有低毒、高效、缓释和长效等特点。与生物体的相容性好,停留时间长。还可通过单体的选择和共聚组分的变化,调节药物的释放速率,达到提高药物的活性、降低毒性和副作用的目的。进入人体后,可有效地到达症患部位。4现在是4页\一共有171页\编辑于星期三

合成高分子药物的出现,不仅改进了某些传统药物的不足之外,而且大大丰富了药物的品种,为攻克那些严重威胁人类健康的疾病提供了新的手段。因此以合成高分子药物取代或补充传统的低分子药物,已成为药物学发展的重要方向之一。5现在是5页\一共有171页\编辑于星期三二、药用高分子的类型和基本性能(一)药用高分子的定义和类型药用高分子的定义至今还不甚明确。在不少专著中,将药用高分子按其应用目的不同分为药用辅助材料和高分子药物两类。药用辅助材料是指在药剂制品加工时所用的和为改善药物使用性能而采用的高分子材料,例如稀释剂、润滑剂、粘合剂、崩解剂、糖包衣、胶囊壳等。

6现在是6页\一共有171页\编辑于星期三

药用辅助材料本身并不具有药理作用,只是在药品的制造和使用中起从属或辅助的作用。因此这类高分子从严格意义上讲不属于功能高分子,但显然属于特种高分子的范畴。而高分子药物则不同,它依靠连接在聚合物分子链上的药理活性基团或高分子本身的药理作用,进入人体后,能与肌体组织发生生理反应,从而产生医疗效果或预防性效果。7现在是7页\一共有171页\编辑于星期三

除了上述两类药用高分子材料外,近年来还逐渐形成了介于这二者之间的一类处于过渡态的高分子化合物。这类材料虽然本身染不具有药理作用,但由于它的使用和存在却延长了药物的效用,为药物的长效化、低毒化提供帮助。例如用于药物控制释放的高分子材料。

8现在是8页\一共有171页\编辑于星期三(二)高分子药物

一些水溶性高分子材料本身具有药理作用,可直接作药物使用,这就是高分子药物。

按分子结构和制剂的形式,高分子药物可分为三大类:(a)高分子化的低分子药物这类高分子药物亦称高分子载体药物,其药效部分是低分子药物,以某种化学方式连接在高分子链上。9现在是9页\一共有171页\编辑于星期三(b)本身具有药理活性的高分子药物这类药物只有整个高分子链才显示出医药活性,它们相应的低分子模型化合物一般并无药理作用。(c)物理包埋的低分子药物这类药物中,起药理活性作用的是低分子药物,它们以物理的方式被包裹在高分子膜中,并通过高分子材料逐渐释放。典型代表为药物微胶囊。10现在是10页\一共有171页\编辑于星期三(三)药用高分子应具备的基本性能由于药用高分子的使用对象是生物体,通过口服或注射等方式进入消化系统、血液或体液循环系统,因此必须具备一些基本的特性。对高分子药物的要求包括:(1)高分子药物本身以及它们的分解产物都应是无毒的,不会引起炎症和组织变异反应,没有致癌性;(2)进入血液系统的药物,不会引起血栓;11现在是11页\一共有171页\编辑于星期三(3)具有水溶性或亲水性,能在生物体内水解下有药理活性的基团。(4)能有效地到达病灶处,并在病灶处积累,保持一定浓度。(5)对于口服的药剂,聚合物主链应不会水解,以便高分子残骸能通过排泄系统被排出体外。如果药物是导入循环系统的,为避免其在体内积累,聚合物主链必须是易分解的,才能排出人体或被人体所吸收。12现在是12页\一共有171页\编辑于星期三6.8.2高分子化药物一、低分子药物高分子化的优点低分子药物分子中常含有氨基、羧基、羟基、酯基等活性基团。它们是与高分子化合物结合的极好反应点。低分子药物与高分子化合物结合后,起医疗作用的仍然是低分子活性基团,高分子仅起了骨架或载体的作用。但越来越多的事实表明,高子骨架并不是惰性的,它们对药理基团有着一定的活化和促进作用。13现在是13页\一共有171页\编辑于星期三

高分子载体药物进入人体后,药理作用通过体液或生物酶的作用发挥出来。高分子载体药物有以下优点:能控制药物缓慢释放,使代谢减速、排泄减少、药性持久、疗效提高;载体能把药物有选择地输送到体内确定部位,并能识别变异细胞;稳定性好;释放后的载体高分子是无毒的,不会在体内长时间积累,可排出体外或水解后被人体吸收,因此副作用小。14现在是14页\一共有171页\编辑于星期三二、低分子药物与高分子的结合方式高分子载体药物Ringsclorf模型。15现在是15页\一共有171页\编辑于星期三从图中可见,高分子载体药物中应包含四类基团:药理活性基团、连接基团、输送用基团和使整个高分子能溶解的基团。连接基团的作用是使低分子药物与聚合物主链形成稳定的或暂时的结合,而在体液和酶的作用下通过水解、离子交换或酶促反应可使药物基团重新断裂下来。输送用基团是一些与生物体某些性质有关的基团,如磺酰胺基团与酸碱性有密切依赖关系,通过它可将药物分子有选择地输送到特定的组织细胞中。16现在是16页\一共有171页\编辑于星期三

可溶性基团,如羧酸盐、季铵盐、磷酸盐等的引入可提高整个分子的亲水性,使之水溶。在某些场合下,亦可适当引入烃类亲油性基团,以调节溶解性。上述四类基团可通过共聚反应、嵌段反应、接枝反应以及高分子化合物反应等方法结合到聚合物主链上。17现在是17页\一共有171页\编辑于星期三高分子载体药物除了林斯道夫模型外,四类基团还可以其他方式组合,得到分子型态各异的模型。例如药理活性基团位于主链中的主链型和位于分子两端的端基型等,它们通常是通过缩聚反应和活性聚合反应获得的(见下图)。18现在是18页\一共有171页\编辑于星期三端基型和主链型高分子载体药物模型

19现在是19页\一共有171页\编辑于星期三三、高分子载体药物的研究和应用

药用高分子的研究工作是从高分子载体药物的研究开始的。第一个高分子载体药物是1962年研究成功的将青毒素与聚乙烯胺结合的产物。至今已研制成功许多品种,目前在临床中实际应用的药用高分子大多属于此类。20现在是20页\一共有171页\编辑于星期三

碘酒曾经是一种最常用的外用杀菌剂,消毒效果很好。但是由于它的刺激性和毒性较大,近年来日益受到人们的冷落。如果将碘与聚乙烯吡咯烷酮结合,可形成水溶性的络合物。这种络合物在药理上与碘酒有同样的杀菌作用。由于络合物中碘的释放速度缓慢,因此刺激性小,安全性高,可用于皮肤,口腔和其他部位的消毒。21现在是21页\一共有171页\编辑于星期三

青霉素是一种抗多种病菌的广谱抗菌素,应用十分普遍。它具有易吸收,见效快的特点,但也有排泄快的缺点。利用青霉素结构中的羧基、氨基与高分子载体反应,可得到疗效长的高分子青霉素。例如将青霉素与乙烯醇—乙烯胺共聚物以酰胺键相结合,得到水溶性的药物高分子。这种高分子青霉素在人体内停留时间比低分子青霉素长30~40倍。22现在是22页\一共有171页\编辑于星期三乙烯醇—乙烯胺共聚物载体青霉素23现在是23页\一共有171页\编辑于星期三

以乙烯基吡咯烷酮—乙烯胺共聚物或乙烯基吡咯烷酮—丙烯酸共聚物作骨架,也得到水溶性高分子青霉素,并具有更好的稳定性和药物长效性。而且聚乙烯吡咯烷酮本身可作血液增量剂,与生物体相容性良好。24现在是24页\一共有171页\编辑于星期三乙烯基吡咯烷酮—乙烯胺共聚物载体青霉素25现在是25页\一共有171页\编辑于星期三乙烯基吡咯烷酮—丙烯酸共聚物载体青霉素26现在是26页\一共有171页\编辑于星期三

利用分子中羧基和胺基的缩聚反应,可制得药理活性基团位于主链的聚青霉素。27现在是27页\一共有171页\编辑于星期三

此外,青霉素在一定条件下还可发生开环聚合:

这种聚合物的分子量一般只能达到1000~3000,其水解后的结构与原来青霉素结构不同,但实验结果表明仍有良好的抗菌作用,且比低分子青毒素有更好的持久性。28现在是28页\一共有171页\编辑于星期三维生素是人体生长和代谢所必须的微量有机物,但所需量很小。按理说,人们每天食用的蔬菜、水果、谷物中的维生素已足够维持肌体活动的需要。但实际上,维生素并不易被人体吸收,其中大部分在进入人体后又被排泄掉了,浪费很大。已经研制了多种维生素与高分子化合物结合的产物,药效大大提高。例如VB1中的羟基能顺利地与聚丙烯酸中的羧基结合。29现在是29页\一共有171页\编辑于星期三30现在是30页\一共有171页\编辑于星期三

利用半胱氨酸型聚合物中的SH基使VB1开环加成,可得到与上述高分子VB1不同结构的产物,但药效基本不变。31现在是31页\一共有171页\编辑于星期三

同样,VC(抗坏血酸)中羟基与聚合物中的羧基以酯的形式结合,也可得到含VC的聚合物。32现在是32页\一共有171页\编辑于星期三低分子抗癌药常常伴有恶心、脱发、全身不适等不良反应。如将这些药物与高分子结合,可定向地将药物输送到病灶处,为变异细胞所吸收,不会在全身循环过久,从而避免了毒性作用。

在低分子抗癌药中,有很大部分是核酸碱类化合物。现已将核酸碱类抗癌药大分子化。这些核酸碱类聚合物具有DNA或RNA的某些性质,可以被肿瘤细胞所吸收,制止肿瘤细胞的复制,起到抗癌作用。33现在是33页\一共有171页\编辑于星期三用以制备核酸碱类聚合物的单体主要是尿嘧啶、腺嘌呤的乙烯基衍生物,例如烷硫基嘌呤的烯烃衍生物,5—氟尿嘧啶的乙烯基衍生物等。

乙烯基尿嘧啶是最简单的尿嘧啶单体,能在引发作用下聚合形成水溶性聚合物,它能像天然核酸那样彼此间通过氢键缔合形成高分子络合物,有良好的抗肿瘤作用。34现在是34页\一共有171页\编辑于星期三

用甲基富马酰氯与5—氟尿嘧啶(5—Fu)反应得到单体,均聚物和共聚物都具有抗肿瘤活性。35现在是35页\一共有171页\编辑于星期三

从以上例子可见,许多低分子药物在高分子化后仍能保持其原来的药效。在某些情况下,高分子骨架还有活化和促进药理活性的作用。但必须注意到,相反的情况也同样存在。在有些情况下,低分子药物高分子化后,药效随高分子化而降低,甚至消失。例如,著名的抗癌药DL—对(二氯乙基)氨基苯丙氨酸在变成聚酰胺型聚合物后,完全失去药效。36现在是36页\一共有171页\编辑于星期三37现在是37页\一共有171页\编辑于星期三

将低分子药物高分子化是克服低分子药物的缺点、提高药物疗效的一种有效方法。存在的问题有两方面:一是可利用的高分子骨架有限,主要限于聚乙烯醇、聚(甲基)丙烯酸酯、聚丙烯酰胺,纤维素衍生物等有活性基团的聚合物。二是结构因素对药理作用的影响尚不清楚,缺乏详尽的理论指导,造成很多药物高分子化后失去药理作用。因此,在低分子药物高分子化方面,还有许多工作要做。38现在是38页\一共有171页\编辑于星期三6.8.3药理活性高分子药物一、药理活性高分子药物的特点

药理活性高分子药物是真正意义上的高分子药物。它们本身具有与人体生理组织作用的物理、化学性质,从而能克服肌体的功能障得,治愈人体组织的病变,促进人体的康复和预防人体的疾病等。39现在是39页\一共有171页\编辑于星期三

实际上,高分子药物的应用已有悠久的历史,如激素、酶制剂、肝素、葡萄糖、驴皮胶等都是著名的天然药理活性高分子。人工合成的药理活性高分子的研究、开发和应用的历史不长,对许多高分子药物的药理作用也尚不十分清楚。但是,由于生物体本身就是由高分子化合物构成的,因此人们相信,作为药物的高分子化合物,应该有可能比低分子药物更易为生物体所接受。40现在是40页\一共有171页\编辑于星期三

目前,药理活性高分子药物的研究工作主要从下面三个方面展开:(1)对已经用于临床的高分子药物,努力搞清其药理作用。(2)根据已有低分子药物的功能,设计既保留功能、又克服副作用的高分子药物。(3)开发新功能的药理活性高分子药物。近年来,合成药理活性高分子药物的研究工作进展很快,已有相当数量的品种进人商品市场。41现在是41页\一共有171页\编辑于星期三二、药理活性高分子药物的研究和应用

低分子量的聚二甲基硅氧烷具有低的表面张力,物理、化学性质稳定,具有很好的消泡作用,故广泛用作工业消泡剂。由于它无毒,在人体内不会引起生理反应,故亦被用作医用消泡剂,用于急性肺水肿和肠胃胀气的治疗,国内外都有应用。42现在是42页\一共有171页\编辑于星期三

聚乙烯N—氧吡啶能溶于水中。注射其水溶液或吸入其喷雾剂,对于治疗因大量吸入含游离二氧化硅粉尘所引起的急性和慢性矽肺病有较好效果,并有较好的预防效果。研究表明,只有当聚乙烯N—氧吡啶的分子量大于3万时才有较好的药理活性,其低聚物以及其低分子模型化合物异丙基N—氧吡啶却完全没有药理活性。43现在是43页\一共有171页\编辑于星期三

这可能是由于高分子量的聚乙烯N—氧吡啶更容易吸附在进入人体的二氧化硅粉尘上,避免了二氧化硅与细胞成分的直接接触,从而起到治疗和预防矽肺病的作用。44现在是44页\一共有171页\编辑于星期三

不少聚氨基酸具有良好的抗菌活性,但其相应的低分子氨基酸却并无药理活性。例如2.5μg/ml的聚L—赖氨酸可以抑制E.Coli菌(大肠杆菌),但L—赖氨酸却无此药理活性,赖氨酸的二聚体的浓度要高至聚L—赖氨酸的180倍才显示出相同的效果。对S.Aureus菌(金黄色葡萄球菌)的抑制能力基本上也遵循此规律。45现在是45页\一共有171页\编辑于星期三聚赖氨酸的抗菌活性名称有效投药量/(μg/ml)E.Coli菌(大肠杆菌)S.Aureus菌(金黄色葡萄球菌)L—赖氨酸——二聚L—赖氨酸450—聚L—赖氨酸2.51聚DL—赖氨酸53DL—鸟氨酸——聚DL—鸟氨酸105DL—精氨酸——聚DL—精氨酸10546现在是46页\一共有171页\编辑于星期三

肝素是生物体中的—种多糖类化合物,分子结构中含有—SO3-,—COO-,及—NHSO3-等功能基团。它与血液有良好的相容性,具有优异的抗凝血性能。模拟它的化学结构,人工合成的含有这三种功能基团的共聚物,同样具有很好的抗凝血性能。但对主链结构、三种功能基团的比例等因素的影响作用,还有待于进一步探讨。47现在是47页\一共有171页\编辑于星期三48现在是48页\一共有171页\编辑于星期三在生物体内,存在一种承担防御作用的蛋白质——干扰素。诱发生物体的干扰素,要比单纯使用外来药物更能抵抗疾病的产生和发展。天然的多糖类化合物对激发干扰素有良好作用。合成的阴离子聚合物是一类能诱发产生干扰素、激发产生广普免疫活性的重要物质,具有免疫、抗病毒、抗肿瘤的作用。在阴离子聚合物中,最引人注目的是由二乙烯基醚与顺丁烯二酸酐共聚所得的吡喃共聚物。49现在是49页\一共有171页\编辑于星期三50现在是50页\一共有171页\编辑于星期三

吡喃共聚物是一种干扰素诱发剂,相对分子质量17000~450000,具有广泛的生物活性。它能直接抑制多种病毒的繁殖,有持续的抗肿瘤活性,可用于治疗白血病、肉瘤,泡状口腔炎症、脑炎等。它还有良好的抗血凝性,有促进肝中钚的排除的功能。它的抗肿瘤活性与它能活化巨噬细胞有关。吡喃共聚物的毒性比其他许多阴离子聚合物低得多,但用于临床试验仍然偏高,因此,作为抗癌药物,仍有许多研究工作要做。51现在是51页\一共有171页\编辑于星期三

顺丁烯二酸酐与其它单体合成的各种共聚物的药理活性差别很大,如顺丁烯二酸酐与苯乙烯的共聚物完全无吡喃共聚物的功能。分子量的影响也很大,如上述吡喃共聚物当相对分子质量低于5万时,药理活性消失。吡喃共聚物诱发干扰素的活性不如天然的多糖类化合物,但长效性和持续性则好得多。

52现在是52页\一共有171页\编辑于星期三6.8.4药物控制释放机制与动力学

概念:药物控制释放就是将天然的或合成的高分子化合物作为药物的载体或介质制成一定的剂型,控制药物在人体内的释放速度,使药物按设计的剂量,在要求的时间范围内以一定的速度在体内缓慢释放,以达到治疗某种疾病的目的。

53现在是53页\一共有171页\编辑于星期三聚合物控制的药物释放是一种新型的给药途径,这种体系能够保持血液中药物的有效浓度在一个相当稳定水平。传统的给药方式(口服或注射)往往使血液中药物浓度大幅波动,即有时超过治疗指数而带来毒副作用,有时未达到有效治疗范围而失去疗效。54现在是54页\一共有171页\编辑于星期三血液中药物浓度随时间的变化.(A)传统的连续多次给药方式;(B)药物控制释放给药方式.55现在是55页\一共有171页\编辑于星期三与常规给药方式相比,药物控制释放优点:提高药物利用率、安全性、有效性;减少给药频率;药物被定位释放到病区部位,提高疗效而减少剂量研制费用大大低于新药合成与筛选。56现在是56页\一共有171页\编辑于星期三一、物理过程控制药物释放包括,扩散作用:由药物分子在聚合物相内的扩散作用.渗透作用:溶剂对聚合物材料的渗透作用57现在是57页\一共有171页\编辑于星期三扩散作用控制是最基本的释放机制,它有微胶囊和载体包容两种剂型.扩散作用控制的药物释放体系.(a)贮库体系;(b)基体体系58现在是58页\一共有171页\编辑于星期三在贮库型体系中,药物被聚合物膜包埋,通过在聚合物中的扩散释放到环境中,在该型中,高分子材料通常被制成平面膜、球型膜、圆筒膜等形式,药物位于其中随时间变化成缓慢释放。M:膜,R:药物贮库59现在是59页\一共有171页\编辑于星期三J——药物的摩尔迁移;Dp——药物在膜相中的扩散系数c——药物的浓度z——药物在膜相中所处的位置。药物由内核经聚合物膜扩散出来,其速率受到聚合物膜控制,动力学上符合Fickian扩散定律:60现在是60页\一共有171页\编辑于星期三Kp/s——药物在聚合物膜与药芯介质之间的分配系数;c——药物在药芯和接收相之间的浓度差;A——膜面积;lp——平面膜厚度;r0——筒状(或球状)膜的外半径;ri——内半径。对于平面膜、筒状膜和球状膜等几何形状,药物通过量Mi与时间t的关系分别为:平面膜筒状膜球形膜61现在是61页\一共有171页\编辑于星期三一般地当药物控制体系置于接收介质中时,需要一定时间才能达到稳定释放,存在滞后效应或爆发效应.贮库式装置药物释放速率与时间的关系62现在是62页\一共有171页\编辑于星期三载体包容体系中,药物溶解于或分散于聚合物中。药物在聚合物中溶解性和扩散行为是释放速率的控制因素。由于药物的浓度随时间延长而降低,以及药物从内部到表面的扩散距离随时间而增加,因此释放速率将随时间而降低。63现在是63页\一共有171页\编辑于星期三对于溶解的药物体系,即药物是溶于无孔高分子基质中,药物的扩散速率方程为:64现在是64页\一共有171页\编辑于星期三对于平面、柱状、球状的载体包容体系药物释放速率方程分别为:——完全释放的药物总置;——时间t时药物释放z——平面膜厚度;r——柱状体或球状体的半径。平面球状柱状65现在是65页\一共有171页\编辑于星期三如果药物均匀分散在基质中,药物从基质释放到环境中的方式可能随扩散的分配机制的变化而变化,例如药物可以利用基质中的微通道释放,也可以利用药物先溶解而出现的微通道进行输送。假设:(1)药物的总浓度(M)大于其在基质中的溶解度(cs);(2)固体药物首先由体系表层进行溶解,表层药物完全溶解后,下层的药物又开始溶解释放,则66现在是66页\一共有171页\编辑于星期三其稳态的释放速率为t时刻的药物释放量为Higuchi方程67现在是67页\一共有171页\编辑于星期三另一方面,分散的药物还可能经过药物相溶解后留下的空穴和孔道扩散出来,在此情况下,药物的包容量和几何形状对释放动力学都有明显的影响。综合上述两种因素,载体包容体系在适当的配方及加工成型条件下可获得假零级释放。68现在是68页\一共有171页\编辑于星期三一般来说,药物的扩散系数随药物相对分子质量增大而减小,随聚合物的柔顺性增大而增大。对于确定的药物,选择适当的聚合物材料是至关重要的,药物在各种聚合物相内的扩散系数与药物相对分子质量的关系

69现在是69页\一共有171页\编辑于星期三渗透作用控制:渗透作用控制是通过水对聚合物材料的渗透作用来控制药物的释放速率。简单渗透泵由带孔的半透膜包覆的药芯构成,药芯由固态的水溶性药物组成,半透膜由聚合物制成(类似于上述的微胶囊体系)。70现在是70页\一共有171页\编辑于星期三

当释放体系置于接收介质中时,水则通过半透膜渗透进入药芯,产生渗透压,将药物从小孔挤出。药物释放量与进入膜内的水的体积相关,释放速率则由膜的性质和药芯的渗透活性所决定。只要内部含有固体药物,穿过膜的渗透压维持恒定,就能获得恒速释放。,即能获得恒速释放。渗透作用控制的药物释放装置71现在是71页\一共有171页\编辑于星期三另一种由渗透作用控制的体系利用聚合物基质的溶胀性质。药物与聚合物以溶解或分散形式组成密实的药丸或微球(类似于上述的载体包容体系)。所用的聚合物为水凝胶。溶胀作用控制的药物释放机制72现在是72页\一共有171页\编辑于星期三此体系需要能溶胀,但不能溶解的玻璃态聚合物。常用半结晶或轻度交联的聚合物,如甲基丙烯酸羟乙酯和甲基丙烯酸甲酯的共聚物、EVA共聚物、交联PVA等水凝胶。释放速率主要与溶胀过程有关,其中水凝胶的亲水性与交联密度是两个重要的参数、通过调节可以获得恒速释放。73现在是73页\一共有171页\编辑于星期三二、化学过程控制化学过程控制有两种形式:①可生物降解性聚合基质体系,其中药物溶解或分散于聚合物中;②聚合物—药物结合体系,药物分子以共价键连接在聚合物的主链或侧链上。

74现在是74页\一共有171页\编辑于星期三(1)聚合物基质体系在聚合物基质体系中,如果采用的基质材料是可以在体内降解的生物降解材料,药物的释放速率不仅受到扩散速率的影响,而且还会受到降解速率的影响。在均相降解过程中,药物的释放通过扩散和浸蚀同时进行。在降解过程药物的扩散系数随时间的延长而增大:75现在是75页\一共有171页\编辑于星期三这种情况下,药物在基质体系中通过扩散进行释放的速率为:扩散和生物降解过程如能保持合适的同步性,活性剂(药物)的释放速率可以达到零级。76现在是76页\一共有171页\编辑于星期三对于非均相降解机制,降解作用仅发生在聚合物基质的表面(表面溶蚀),由外表逐渐向内部发展,只是已发生降解的部位药物才能扩散出来。当药物在基质内的扩散作用可忽略时,药物释放速率受溶蚀过程控制,可恒速释放药物。但当药物的扩散作用不能忽略时,释放动力学介于零级和一级之间。77现在是77页\一共有171页\编辑于星期三(2)聚合物—药物结合体系在聚合物—药物结合体系中,药物分子以共价键连接在聚合物的主链或侧基上,只有通过敏感化学键的水解或酶解作用,释放出自由的活性药物。78现在是78页\一共有171页\编辑于星期三敏感化学键的水解或酶解速率是释药的控制步骤,另外,水渗透进入载体内部以及已断裂的药物扩散出来都会影响药物的释放速率。对于侧链结合方式、药物往往通过间隔基与聚合物主链相连,断裂点包括药物与间隔基之间的化学键以及间隔基与主链之间的化学键,因此,引入间隔基可为控制释放速率提供有效的方法。79现在是79页\一共有171页\编辑于星期三在聚合物—药物结合体系中,靶向性高分子药物是其中最引入注目的,它把活性药物连接在对特定病区具有识别功能的分子上(如抗体),将药物带入病区再释放出来,达到特殊的治疗效果。这是理想的靶向性高分子药物的模型(Ringsclorf模型),集活性药物、靶向性基团和调节溶解性的链段于一体。适用于组织靶向性、细胞靶向性和亚细胞靶向性抗肿瘤高分子药物。80现在是80页\一共有171页\编辑于星期三三、体外调节控制体外调节控制是利用一些物理手段如磁场、超声波或电场来加强或调节药物的释放速率,即脉冲释药体系。磁场控制体系中,药物和磁性粉末均匀地分散在聚合物基质中,药物按通常的扩散机制释放出来。当外加一个振荡磁场时,则大大地加快释放速率。超声波被用来加强药物从聚合物基质中释放的速率。电场控制对于透皮给药体系具有良好的促进作用,离子化的聚合物在外加电场的作用下加快释药速率,组成脉冲释放体系。81现在是81页\一共有171页\编辑于星期三四、自动调节控制自动调节控制是药物释放体系根据体内由疾病引起的某些生理变化而作出相应的反应来调节药物释放速率。如:糖尿病患者的血糖浓度经常变化,使用胰岛素治疗时,要求药物释放体系能随葡萄糖浓度增大而加快胰岛素的释放速率。82现在是82页\一共有171页\编辑于星期三体系一:自动调节体系是使聚合物膜的通透性与葡萄糖浓度相关联。这种体系由多孔膜包覆饱和胰岛素溶液组成,该膜由PHEMA水凝胶组成,其中还含有侧链氨基和固定化葡萄糖氧化酶。当葡萄糖扩散进入水凝胶相内,被酶催化氧化成葡萄糖酸,降低了膜内的pH值,导致氨基质子化,增加水凝胶的通透性,释放胰岛素的速率加快。83现在是83页\一共有171页\编辑于星期三体系二:Ito等将葡萄糖脱氢酶(GDH)、尼克酰胺(NAD)、黄素腺嘌呤二核甘酸(FAD)先后固定于丙烯酸接枝的PMMA膜上,然后以二硫键将胰岛素连接在膜上。当葡萄糖浓度高时,在GDH作用下氧化脱氢,产生的电子经NAD和FAD传递至二硫键,使二硫键还原而断裂,释放出游离的胰岛素。84现在是84页\一共有171页\编辑于星期三体系三:Kim等利用刀豆球蛋白A对葡萄糖及其类似物(糖基胰岛素)的竞争性结合作用,制成对葡萄糖浓度敏感的胰岛素释放体系。85现在是85页\一共有171页\编辑于星期三自动调节控制或智能药物释放体系的独特功能已引起人们的极大兴趣。目前研究得较多的是pH敏感性、温度敏感性、离子强度敏感性聚合物及其释放性能。86现在是86页\一共有171页\编辑于星期三药物控制释放方法与给药途径的关系:87现在是87页\一共有171页\编辑于星期三6.8.5用于控制释放的高分子材料一、药用生物降解材料(一)材料降解的基本形式均相降解(本体降解)非均相降解(表面降解)88现在是88页\一共有171页\编辑于星期三外形保持不变,结构逐渐变松分子量和力学性能下降在先,质量损失滞后表层分子量和质量同时下降降解速率不随时间变化89现在是89页\一共有171页\编辑于星期三不同初始分子量样品的聚D,L-乳酸膜invivo失重情况本体降解通常有一个诱导期。在诱导期内,聚合物基质降解是逐渐的,几乎没有失重。当聚合物分子量达到某一临界值时,失重相对加快。溶蚀开始前的诱导时间强烈依赖着样品的初始分子量。

90现在是90页\一共有171页\编辑于星期三BulkErosion

SurfaceErosion

91现在是91页\一共有171页\编辑于星期三92现在是92页\一共有171页\编辑于星期三(二)降解类型与化学结构降解可分为体外降解与体内降解两类。影响体外降解因素很多,如热、紫外线、辐射、大气、微生物、水、电等。从理论上讲,所有高分子材料都会老化、降解,只是时间长短不同而已。体内材料降解的主要影响因素是水与酶(包括PH影响)。93现在是93页\一共有171页\编辑于星期三依据材料中不稳定键的所处位置不同,可将其降解聚合物的药物传递分为五种类型。以A为活性剂(药物分子);X为可水解的不稳定基团,如酯键等;R为疏水基不稳定键是主链骨架的一部分,键断裂时产生小分子,可溶性聚合物片断。此时,包埋的药物A得到释放。94现在是94页\一共有171页\编辑于星期三不稳定键为支链并连有疏水基因R,键断裂释出疏水基团,导致聚合物溶解与药物释放。95现在是95页\一共有171页\编辑于星期三聚合物存在交联网络,不稳定键断裂,释放出药物A与可溶性聚合物碎片,它的大小取决于交联网络中可水解键的密度。96现在是96页\一共有171页\编辑于星期三药物基闭直接连于聚合物的主链或支链,药物基因既可以以高分子的形式发挥作用,也可以通过某些键的断裂释放药物分子而达到治疗目的,这两种类型也即为高分子药物97现在是97页\一共有171页\编辑于星期三无论哪一种类型,药物的释放速率都与化学键的断裂难易程度有关,而高分子的水解与结构有关.如:杂链要比碳链聚合物水解速率快;另外支链疏水基团较大,疏水性强的聚合物、吸收水性能差,也不易在主链发生水解。98现在是98页\一共有171页\编辑于星期三此外,高分子的分子量及其分布、分子的聚集形态对降解也影响较大。一般地,聚合物结晶度高的聚合物水解较慢。

体液因素对于聚合物降解影响很大,因为人体不同组织,成分不同,同一种材料在人体内不同位置,降解快慢也不同。肠溶片、结肠定位给药系统等就是根据这一原理来设计的。99现在是99页\一共有171页\编辑于星期三(三)生物降解控缓释系统装置的类型根据控缓释制剂的释药原理,控释系统大致可分为以下四种类型:1.降解型控释整体系统(共混体系)该系统材料的降解属非均相降机制,系统中包埋的药物基本上不迁移,直至周围的基质完全降解为止,药物由外往里,逐步释放。100现在是100页\一共有171页\编辑于星期三2.扩散型控释整体系统(共混体系)该系统材料由本体降解的聚合物组成,药物在聚合物降解前或降解过程中通过基质的孔隙或通道往外扩散,释放药物。101现在是101页\一共有171页\编辑于星期三3.扩散型控释贮库系统

该系统装置是本体降解聚合物膜材料包裹药物,药物以扩散形式释放,胶囊只有当药物扩散完成后才降解。102现在是102页\一共有171页\编辑于星期三4.溶蚀聚剂系统该系统中,药物通过不稳定化学键共价连于生物可降解的材料基质上,随着不稳定键的断裂,药物不断释放,同时基质也降解。103现在是103页\一共有171页\编辑于星期三(四)生物降解控缓释系统药物释放影响因素药物从生物降解控缓释系统中释放受许多因素影响,情况很复杂。主要的影响因素有

剂型、载体种类与性质、药/载比、药物在介质中溶解度、药物与载体材料的相容性等。上述的许多因素涉及到药剂学问题,这里只讨论与载体性质有关的几个因素:104现在是104页\一共有171页\编辑于星期三A.聚合物分子量的影响通常情况下,聚合物分子量升高,释药速率下降,但这并不一定存在线性关系,有时在某一分子量范围内没有太大影响。

例:磺胺嘧啶/聚乳酸释药系统105现在是105页\一共有171页\编辑于星期三B.不同种类载体对同种药物释放速率的影响同种药物在不同载体中释药速率不同,与聚合物的结构与性能有关,如与Tg、Tm、结晶度、药物的相容性、药物和载体的相互作用等有关。另外,不同的可降解聚合物,降解过程中,基质空隙大小与类型也各不相同。对于一般无空隙聚合物,链间的空间大小与结构也不相同。106现在是106页\一共有171页\编辑于星期三C.药/载比对释放速率的影响药物与聚合物比例是影响药物释放的一个因素。例:地西泮(DZP)/聚羟基丁酸酯(PHB)微球释放系统,随着药/载比增加,释药速率也增加。107现在是107页\一共有171页\编辑于星期三D.聚合物交联度的影响对于以不稳定交联键水解为基础的生物降解型水凝胶控释系统而言,交联度对体系释药性能影响很大。一般交联度高时释药慢,交联度低时释药快,因为高交联度使水凝胶吸水膨胀慢,基质降解也慢,故释药也减慢。108现在是108页\一共有171页\编辑于星期三(五)几种常见的药用降解材料生物可降解材料按材料来源可分为两类:天然高分子材料,如蛋白类、多糖类;合成降解材料,如聚酯类、聚氨基酸类材料等,这些材料的特点是在高聚物链中都含有可被水或酶分子作用的不稳定的键。109现在是109页\一共有171页\编辑于星期三常见的药用生物降解材料:PLA,PLGA,PCL,PHA,聚氨基酸,聚原酸酯,聚酸酐,聚磷腈等.PHA110现在是110页\一共有171页\编辑于星期三二、药用水凝胶材料(一)水凝胶的结构与特性水凝胶是一些高分子吸收大量水分形成的溶胀交联状态的半固体物,交联方式为离子键、共价键及次价力,如范德华力和氢键等。

现在是111页\一共有171页\编辑于星期三水凝胶是是最常见也是最为重要的一种。绝大多数的生物、植物内存在的天然凝胶以及许多合成高分子凝胶均属于水凝胶。水凝胶可以吸收超出自重达几百倍的水,故又大量地使用在卫生材料中。112现在是112页\一共有171页\编辑于星期三1.线性高分子水凝胶结构一般线型的高分子材料在有限量的溶剂或不良溶剂中,只发生有限溶胀,即材料吸收的溶剂量不再增加而达到平衡,形成包含有溶剂分子的两相状态,即高分子凝胶。此时,分子链处于较伸展状态,但分子间的相互作用仍很强,类似网状交联高分子的特征。溶剂分子被固定在网格中,使凝胶有一定强度、弹性或可塑性等。113现在是113页\一共有171页\编辑于星期三

这种物理交联主要依赖于分子间的范德华引力,当外界条件如温度、溶剂量等发生变化时,链间空间增大,链段作用力变小,以致于物理交联破坏,凝胶分子完全分散到溶剂中,形成溶液或溶胶,如果外界条件产生逆转、它们又可能回到凝胶状态。如:明胶在水中加热溶解,冷却后又回复到凝胶状态。114现在是114页\一共有171页\编辑于星期三有些高分子材料,在接触溶剂时,材料外层首先迅速溶胀与溶解,并形成高粘度的凝胶层,阻滞溶剂分子进一步扩散入材料的内部,造成材料内部不溶胀.如:聚乙烯醇与羧甲基纤维素钠等水溶性高分子材料,必须先用冷水分散与润湿,再加热溶解。115现在是115页\一共有171页\编辑于星期三线性高分子材料的凝胶具有弹性和粘性,但强度一般较低.它们可因加热或加入电解质等而发生脱水收缩形成干胶。药剂学中常控制一定脱水速度,制作胶囊与膜片,如明胶胶囊与聚乙烯醇膜剂等。116现在是116页\一共有171页\编辑于星期三2.交联水凝胶的结构

如果线性高分子用某种交联剂交联(如PVA凝胶中加入硼砂),水凝胶单体通过加入交联剂或辐照技术,产生交联,这种交联一般通过共价键或离子键交联,形成比较稳定的水凝胶网络结构,这种凝胶称为不溶性水凝胶.这种水凝胶吸收水分有个极限量,且只溶胀而不溶解(不包含溶蚀型水凝胶在内)。117现在是117页\一共有171页\编辑于星期三在交联型水凝胶中,水分子的不同物理状态:结合水:水分子以氢键形式牢固地与高分子中大量亲水极性基团结合,结合水几乎不引起材料体积的变化;界面水:水分子以范德华力等微弱相互作用力绕高分子非极性基团排列;游离水:水分子仅仅分布在高分子链间网络中,自由扩散不受高分子的影响,这部分水分子对材料溶胀体积起主要作用。118现在是118页\一共有171页\编辑于星期三一般高分子交联度越高,其吸水性能越低。水凝胶中结合水的数量主要取决于大分子链中极性基团的数量。对于含有可电离的基团(如-NH2,-COOH等)的水凝胶,吸水量还与水性介质中pH等因素直接相关。119现在是119页\一共有171页\编辑于星期三3.药用水凝腔的特性:亲水性:亲水基-OH、-COOH、-CONH2、-CONH-存在、使水凝胶在生理温度、体内pH及离子强度下可吸水膨胀10%-98%。

生物相容性:整个材料具备了一种流体的性质,这种与机体组织形态相似、柔软、润滑的表面提供了与组织表面亲和的环境多效能:可控制药物释放,并具有生物降解性、生物粘附作用。有些水凝胶材料还具有pH敏感性、温度敏感性等性能。120现在是120页\一共有171页\编辑于星期三

多用途:可被制成传统剂型,如片剂、胶囊剂、软膏;多种新型给药系统,如胃漂浮给药制剂、生物粘附制剂、脉冲给药制剂、药物自调给药体系等。高效性水凝胶制剂具有良好的缓释、控释效果,可有效延长药物在体内的吸收,提高药物利用度,而且可以降低副作用。121现在是121页\一共有171页\编辑于星期三(二)水凝胶材料按水凝胶骨架形成结构分类:线性高分于水凝胶、交联网络型高分子水凝胶。前者具有溶胀—溶解特征,并具有可逆性,后者只有有限度的溶胀,而不溶解。按水凝胶中分子链的降解性分类:溶蚀型水凝胶、不溶型水凝胶。前者交联键或分子链是由不稳定键形成,在特殊介质环境中可降解成“碎片”,具有不可逆性,后者由稳定的交联键形成,不可降解。122现在是122页\一共有171页\编辑于星期三按水凝胶材料来源分类:天然材料:如果胶、阿拉伯胶、藻酸盐、琼脂、明胶等;合成材料:乙烯类,PVA、PVP、PHEMA、丙烯酸及其酯类、聚丙烯酰胺类(PAAm);其他类型:聚乙二醇(PEG)。改性材料:如淀粉及其衍生物、纤维素衍生物、甲基纤维素、羟乙基纤维素、壳聚糖等

123现在是123页\一共有171页\编辑于星期三按材料在药剂学中作用分类:

骨架材料:如天然果胶、海藻酸盐、琼脂;纤维素的衍生物;多糖类的葡聚糖、壳聚糖,以及合成乙烯基聚合物,如聚乙烯醇、丙烯酸酯等;包衣材料:聚乙烯醇、聚乙烯吡咯烷酮、明胶、淀粉等;缓释控释材料:聚乙二醇、聚乙烯吡咯烷酮、纤维素衍生物、聚丙烯酸酯以及天然多糖类大分子材料;生物粘附材料:明胶、海藻酸盐、聚乙烯醇等;埋植剂:聚丙烯酰胺、聚氧乙烯、壳聚糖、纤维素衍生物等124现在是124页\一共有171页\编辑于星期三三、离子聚合物离子聚合物是一类在酸性或碱性介质中可产生解离,形成带正电荷或负电荷的高分子材料。类似于无机溶液中的电解质,故又称为“聚电解质”(Polyelectrolyte),是聚合物的电解质.它与无机电解质不同之处在于它是一个分子量很大的大分子,不仅具有一般电解质的电性特点,同时还有聚合物大分子的许多其他特点。125现在是125页\一共有171页\编辑于星期三离子聚合物在药学控释领域的应用:刺激响应药物控释药树脂制剂细胞免疫隔离移植多肽蛋白质药物的控缓释基因治疗及人造疫苗等126现在是126页\一共有171页\编辑于星期三(一)聚电解质复合物1.聚电解质复台物形成的释药系统天然的离子聚合物,如海藻酸钠、壳聚糖、人体与动物中肝素、透明质酸、明胶等。人工合成的一些离子聚合物,如聚丙烯酸、聚环乙亚胺、聚赖氨酸、聚乙烯胺、聚磷腈等。127现在是127页\一共有171页\编辑于星期三近几年来,人们发现将阳离子聚合物、阴离子聚合物、两性大分子组合起来的聚电解质复合物,在控缓释药物剂型、免疫隔离细胞移植、多肽蛋白给药系统及基因治疗方面可得到很好的应用,下面分别介绍它们的应用机制。128现在是128页\一共有171页\编辑于星期三(1)聚电解质复合物释药系统

当阳离子聚合物(聚阳离子)、阴离子聚合物(聚阴离子)与模型药物混合时,由于静电作用,聚阳离子与聚阴离子通过盐键形成更大分子量的聚电解质复合物,将模药包埋其中,药物被随机包埋在聚电解质复合物链中,如聚丙烯酸/聚环乙亚胺聚电解质复合膜就是一例。129现在是129页\一共有171页\编辑于星期三聚电解质复合物包埋模型D.药物;Rc.聚阳离子;Ra.聚阴离子130现在是130页\一共有171页\编辑于星期三(2)聚离子与小分子离子形成聚电解质复合网络结构当聚阳离子或聚阴离子分别与无机酸根或无机金属阳离子相互作用时,小分子离子通过“egg-box”机制使聚阳离聚集,凝胶化。此时,药物被包埋在网络之中,如果被小分子离子交联后的聚离子表面再复合一层带相反电荷的聚离子,则可形成包裹型的微胶囊。131现在是131页\一共有171页\编辑于星期三如海藻酸钠聚阴离子用钙离子交联,聚离子中羧酸根一方面可通过钙离子交联,剩余的羧酸根,还可以与其他聚阳离子如聚乙烯胺或聚赖氨酸等形成聚阴离子-聚阳离子复合物,药物被包裹在内层聚阴离子链中,外层由聚阳离子所包裹。132现在是132页\一共有171页\编辑于星期三133现在是133页\一共有171页\编辑于星期三钙离子交联后的聚阴离子与聚阳离子形成复合物D.药物;Pc.聚阳离子;Pa.聚阴离子134现在是134页\一共有171页\编辑于星期三由于小分子离子与聚阴(阳)离子复合物受外界(环境)影响,性能上易产生难以预测的复杂变化,如膜稳定受pH、离子强度、某些离子存在等因素影响。采用双层聚电解质膜包囊方法可以克服上述缺点。即在钙离子交联的海藻酸钠微球外层,再用聚阳离子通过静电作用形成一层聚电解质复合膜,这样既稳定了内层的微球,又提高了载药量延长厂释药时间。135现在是135页\一共有171页\编辑于星期三(3)离子聚合物与模型药物形成的聚电解质复合物这一类模型药物大多数是用于治疗某种疾病的多肽、蛋白类、基因等,如很多的碱性生长因子(basicgrowthfactor,BGF)一般等电点大于9.0,在生理条件下带负电荷,可以与带正电荷的聚阳离子通过静电作用形成聚电解质复合物。136现在是136页\一共有171页\编辑于星期三Tabata等模拟碱性成纤维细胞生长因子(BFGF)在细胞间隙中的存在形式,用碳化二亚胺交联的酸性明胶(等电点为5.0)水凝胶作为BFGF(等电点为9.6)的控释载体,成功地实现了BFGF较长时间的高活性释放。聚阳离子与多肤药物形成聚电解质复合物示意图

-:BFGFPc:聚阳离子137现在是137页\一共有171页\编辑于星期三(4)药树脂药树脂是巳固化(交联)的离子聚合物与带有酸性或碱性基团的药物结合起来形成的一类特殊的“聚电解质复合物”.通常将含酸性基团(如-SO3H或-COOH)的阳离子交换树脂与碱性药物(如生物碱或其他胺类药物)结合成药树脂,或含碱性基因(如季铵基或伯胺基)的阴离子交换树脂与酸性药物(如乙酰水杨酸、巴比妥酸衍生物)结合形成药树脂。138现在是138页\一共有171页\编辑于星期三制作药树脂的方法有静态交换法和动态交换法两种。前者是将离子交换树脂与药物水溶液在搅拌下浸泡至离子交换平衡为止;后者用药物水溶液为移动相,直至交换达到平衡。139现在是139页\一共有171页\编辑于星期三2.聚电解质复合物特征聚电解质复合物具有一般电解质特点,又具有聚合物大分子的特征。概括如下:(1)对细胞具有强的亲合力;(2)制备条件温和;(3)可作为基因载体;(4)具有抗病毒潜力。聚阴离子化合物,如磺化聚多糖、带有负电荷的血浆白蛋白、乳蛋白、合成的磺化聚合物、聚阴离子乳化剂、聚膦酸盐等,在体外实验中存在明显抗病毒作用。140现在是140页\一共有171页\编辑于星期三(二)基因传递系统载体——阳离子聚合物基因治疗是一种用纠正基因缺陷取代突变基因产生一种治疗性蛋白来治疗人类疾病的一种医学介入方法。基因传递系统载体的研究成为基因治疗中的研究热点。141现在是141页\一共有171页\编辑于星期三要完成DNA转移,细胞的穿进和内化是非常关键,最早的方法是用DNA微沉淀法加速DNA吸咐到细胞表面。这种方法基因转移效率低,不足以满足临床应用要求。改进细胞穿透和细胞核移植的方法,可划分为三大类:一类以脂质体为媒介的DNA给药系统;一类以重组病毒为媒介的DNA给药系统;还有一类以聚离子为媒介的DNA给药系统。142现在是142页\一共有171页\编辑于星期三1、脂质体作为介导载体脂质体介导DNA主要依赖于组成脂质体的磷脂成分能促进细胞膜的融合,加速DNA的转移。主要优点:①脂质体与基因复合过程容易,便于生产;②脂质体是非病毒性载体与细胞膜融合,将目的基因导入细胞后,本身降解,无毒,无免疫原性;③DNA可得到保护,不被灭活或被核酶降解。但脂质体作为基因转导媒介在人体中转导效率低,缺乏有效的染色体整合机制。143现在是143页\一共有171页\编辑于星期三2、重组病毒作为介导媒介重组病毒的媒介主要有两种:一种是逆病毒,另一种是腺病毒。前者是由一大家族包封的单股RNA病毒组成,完整逆病毒粒径为70-100nm左右,外层由病毒糖蛋白质包封,内核由挂有逆病毒的结构蛋白组成,内含挂有病毒的蛋白酶,整合酶和反转录酶,这些病毒能整合它们的DNA到宿主染色体中,这个过程能导致宿主细胞永久性转变,并将病毒染色体传至所有姐妹细胞,但这种整合可永久性改变宿主染色体,也带来产生癌症与感染的危险。144现在是144页\一共有171页\编辑于星期三3、聚阳离子为载体由于脂质体与重组病毒在基因介导中存在许多难题,以非病毒材料为基因载体的基因治疗研究引起重视,其中用聚阳离子和基因形成的聚电解质复合物,模拟类似病毒的结构作为基因载体,就是其中一个重要方面。在使用的聚阳离子中以多肽(如聚赖氨酸PLL等)为主,另外还有明胶、壳聚糖等。在一定条件下,可以在聚阳离子链上引入具有特殊功能基团(如半乳糖、转铁蛋白),使聚阳离子-基因纳米粒具有类似病毒的功能。145现在是145页\一共有171页\编辑于星期三为了克服聚阳离子-基因纳米粒在制备过程中和进入人体后血浆中易聚集的不稳定的缺点。1995年,Harada等用嵌段PEG共聚的聚赖氨酸阳离子(PEG-PLL)和用嵌段PEG共聚的聚天冬氨酸阴离子,在溶液中自发形成稳定单分散的聚电解质复合物纳米球。146现在是146页\一共有171页\编辑于星期三内层为聚阳离子-聚阴离子通过静电形成的复合物疏水核,外层为PEG亲水链段,被称为聚离子复合物胶束。147现在是147页\一共有171页\编辑于星期三在基因治疗各种疾病过程中,最关键的是开发一种有效方法将治疗基因导入靶细胞。到目前为止,已设计开发的各种无病毒基因载体中,有些已在临床试验中。最简单的方法是用不含载体的裸DNA注入局部组织或系统循环中。进一步方法是用物理方法(如基因胶)或化学方法(如阳离子脂质或阳离子聚合物)改进DNA质粒基因转移的效率与对靶细胞专属性。148现在是148页\一共有171页\编辑于星期三(三)离子聚合物作为控缓释药物给药系统载体离子聚合物在药物新剂型中的应用主要有两方面:一是可组成对外界环境有刺激响应的释药系统;二是作为多肽蛋白类药物载体。149现在是149页\一共有171页\编辑于星期三1、pH响应的水凝胶体系PH响应水凝胶载体主要用于制备药物的口服制剂和其他基于PH响应的给药体系,离子聚合物必须形成对应的复合物才能作为药物的载体。不管是哪一种类型的离子复合物都是通过“盐键”,即正、负离子间静电引力来形成的。当环境(介质)条件发生变化时,如pH变化、离子强度变化、电场变化,都影响(破坏)正、负离子间静电引力的平衡,从而导致部分或全部“盐键”的断裂,即复合物的形成和解离,使复合物的体积发生溶胀,这就是药物依赖环境变化,产生控缓释的机制。150现在是150页\一共有171页\编辑于星期三(1)聚阴离子与小分子阳离于形成的复合物

这一类型复合物中,以钙离子交联海藻酸钠作成小球报道最多,在药物控缓释中得到广泛应用。影响药物从钙离于交联的海藻酸钠小球中释放因素:海藻酸钠性质、分子量大小,M嵌段与G嵌段比率都会严重影响海藻酸钠性质。此外,制备小球的条件,如海藻酸钠和钙离子的浓度、药物含量、凝胶化历程等对释药行为都有影响。释放介质的性质与组成对释药行为也有大的影响。如小球在磷酸盐缓冲液(pH=7.4)中释放葡聚糖呈脉冲释放形式,小球为溶蚀释放机制。在磷酸盐缓冲液(pH=6.8)中模药亮兰释放呈线性关系。151现在是151页\一共有171页\编辑于星期三(2)聚阳离子与阴离子形成的复合物

壳聚糖是典型的聚阳离子,由于其氨基的离子化,在酸性下溶胀,中性条件下收缩,在胃液中具有飘浮与粘附特性,可延长在胃部逗留时间,被广泛作为口服胃肠粘膜给药制剂载体。最先壳聚糖载体用化学交联(如戊二醛等)制备。随后,用聚醚、果胶或黄原胶等壳聚糖共混制备膜或微球。可用柠檬酸根、硫酸根、偏磷酸钠、三聚磷酸钠等阴离子交联壳聚糖形成膜或微球、小球,也可通过小球表面复合壳聚糖—海藻酸钠聚电解质复合物增强小球机械性能等。152现在是152页\一共有171页\编辑于星期三(3)聚阳离子-聚阴离子型复合物这类复合物以弱的聚酸与弱的聚碱所形成聚电解质为主,在中性条件下稳定,在酸性或碱性条件下,则弱的聚酸或弱的聚碱会非离子化,分别失去电荷使复合物解离溶胀。如果复合物中载有药物,则药物分子随着载体溶胀而释放出来,如聚丙烯酸—聚环乙亚胺胶囊。肝素也是一种聚酸,侧链带有氨基和磺酸基,它可以和聚烯丙胺(弱的聚减)在pH=2~11时形成稳定的聚电解质复合物,在电场的瞬间解离,达到药物能响应外界电场变化的目的。153现在是153页\一共有171页\编辑于星期三6.8.x药物微胶囊一、微胶囊和药物微胶囊的基本概念微胶囊是指以高分子膜为外壳、其中包有被保护或被密封的物质的微小包囊物。就像鱼肝油丸那样,外面是一个明胶胶囊;里面是液态的鱼肝油。经过这样处理,鱼肝油由液体变成了固体。事实上,世界上第一个微胶囊专利也就是鱼肝油微胶囊。微胶囊的颗粒直径要比传统的鱼肝油丸小得多,尺寸范围在零点几微米至几千微米之间,一般为5~200μm。

154现在是154页\一共有171页\编辑于星期三

微胶囊内被包裹的物质通常称为芯(core)、核(nucleus)或填充物(fill);外壁称为皮(skin)、壳(shell)或保护膜(protecilvefoil)。微胶囊中所包裹的物质,可以是液体、固体粉末,也可是气体。由于应用目的和制造工艺不同,微胶囊的大小、形状可有很大变化,其包裹形式也有多种。常见的有155现在是155页\一共有171页\编辑于星期三微胶囊的类型单核多核多核,不规则外形双璧微胶囊簇含微胶囊之微胶囊156现在是156页\一共有171页\编辑于星期三

微胶囊可以改变一个物质的外形而不影响它的内在性能。例如,一种液体物质经微胶囊化后就变成了固体粉末,其外形完全发生了变化,但在微胶囊内部还是液体,性质并不改变。但从另一意义上讲,物质的微胶囊化可改变其性质,它可以使物质分散成细小状态,经微胶囊化后,物质的颜色、比重、溶解性、反应性、压敏性、热敏性、光敏性均发生了变化。

157现在是157页\一共有171页\编辑于星期三例如,一个比水重的物质可通过调节聚合物膜的比重和包入空气而使它浮于水面上。微胶囊的最大特点是可以控制释放内部的被包裹物质,使其在某一瞬间释放出来或在一定时期内逐渐释放出来。瞬间释放是通过挤压、摩擦、熔融、溶解等作用使外壳解体;逐惭释放则是通过芯材向壳体外逐渐渗透或外壳逐渐溶解、降解而使芯材释放出来。158现在是158页\一共有171页\编辑于星

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论