版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
生物医学数学第1页/共112页2教学要求
掌握生物医学数学的一些重要概念、公式与方法,了解数学在生物医学中的应用。能够应用数学工具建立生物医学的数学模型能初步掌握通过对模型的数学推理去研究生物医学领域相关问题的方法。第2页/共112页3一生物医学数学的发展
1.1数学和生物医学的结合现代生物医学发展趋势
定性研究走向定量研究,经历着数学化的发展进程。
第3页/共112页4数学建模与当今医学第4页/共112页5第5页/共112页6数学发展史上的四大危机说第一次危机指初等数学智能反映简单的数量关系不能反映变化率第二次危机暴露了数学只能反映确定现象及其规律而不能反映随即现象和统计规律第三次危机暴露了二值逻辑的局限性和反映模糊现象的局限性第四次危机暴露了数学不能正确反映生命现象和人脑思维规律第6页/共112页7数学模型(MathematicalModel)和数学建模(MathematicalModeling)对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。建立数学模型的全过程(包括表述、求解、解释、检验等)数学模型数学建模第7页/共112页81.1数学化一、什么是数学模型 数学模型就是对实际问题的一种数学表述。即,根据现实世界某对象特有的内在规律,进行必要的简化抽象,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。
二、建立模型的一般步骤
1.数学化
2.建模3.反馈第8页/共112页9生物医学数学化的一般模式医学实际问题→数学化(定量分析)→数学模型(定量化公式或定性指标)→计算机完成计算与论证
→反馈修正(实践检验)→定性理论第9页/共112页10数学化的方法首先是将物理问题用数学作定量描述,利用数学方法计算推导建立模型,经过实践检验,求得新理论,使物理学的研究从定性的、描述性的水平,通过数学引向定量的、精确的论述。科学研究的这条数学化的途径,基本上是用于一切科学,它的一般模式是:实际问题——数学化(定量分析)——数学模型(定量公式或定性指标)——反馈修正(实践检验)——定性理论第10页/共112页11数学方法及应用问题范畴数学化方法数学模型主要数学知识数学分支精确领域数学物理方法代数方程微分方程初等数学数学分析经典数学随机领域概率统计方法经验公式随机模型概率论数理统计统计数学模糊领域模糊方法模糊数学模型模糊集论模糊数学某些复杂系统的最优解统筹方法规划模型线性代数规划论最优化理论运筹学生命领域生命统计方法生态模型生物数学离散数学突变论生物数学第11页/共112页12数学医学上的一些例子
①医学统计学(MedicalStatistics)②数学与计算机的结合在生物技术和生物医学工程方面的应用③数学是现代化医疗器械及医疗诊断方法的催化剂④数学模型在药物动力学上的应用⑤数学在心血管生理病理方面的应用第12页/共112页13第一个运用数学方法研究生物医学问题的人
孟德尔在植物杂交研究中采用数理统计方法来对实验结果进行统计分析,并用概率论来加以说明。在生物学史上,孟德尔是第一个运用数学方法来研究生物学问题的人。以后概率统计在医学的应用非常广泛,如显著性检验、回归分析、全概率公式、Bayes公式、计量诊断模型、最大似然模型、决策树概率分布,微生物检测等。第13页/共112页14生物统计学的创立1901年Pearson创立生物统计学,开创了统计数学在生物医学上的应用研究,打破了数学在生物医学上的应用等于零的局面。第14页/共112页15生物数学的开创
1931年,Volterra应用微分方程组研究动态平衡,完成了《生态竞争的数学原理》,开创了一门新型分支:生物数学。1935,Mottram对小白鼠皮肤癌生长规律进行了研究,认为肿瘤的瘤细胞总数n随时间的变化速度与n成正比,且获得了体瘤在较短时间内符合指数生长规律的研究成果。20世纪30年代,Blair等人对神经兴奋理论进行了研究,并应用微分方程建模,将医学问题数学化,取得了著名的神经刺激理论模型。第15页/共112页16模糊数学与生物医学结合1969年美国控制论专家、模糊数学创始人Zadeh发表的著名论文《模糊集和系统在生物学中的应用》,率先把模糊数学与生物医学联系了起来。第16页/共112页17现代数学化模式在计算机出现后又有新的进展,例如:近20年来出现了医学专家咨询系统,如:病因相连模型(CASNET)传染病治疗诊断系统(MYCIN)内科病诊断系统(INTERNIST)肾脏病诊断系统(PIP)肺病诊断系统(PUFF)他的模式:专家治病经验——数学化——计算机学习——反馈修正——专家系统——计算机问诊第17页/共112页18INTERNIST-1和QMR系统
INTERNIST-1系统是由Pittsburg医科大学开发的用于内科疾病诊断咨询系统。通过疾病症状来推理疾病。收集了600多种疾病的诊断知识,4500多临床表现。给出诊断疾病的相关参数:相关频率:在某种疾病中某临床症状发生的频率。提示力度:某症状对疾病存在的提示强度。处理用户输入的临床表现,得出一组诊断建议。移植到微机上,称QRM(QuickMedicalReference)第18页/共112页19几个典型的医学决策支持系统1、MYCIN系统MYCIN主要用于协助医生诊断脑膜炎一类的细菌感染疾病。在MYCIN的知识库里,大约存放着450条判别规则和1000条关于细菌感染方面的医学知识。它一边与用户进行对话,一边进行推理诊断。它的推理规则称为“产生式规则”,类似于:“IF(打喷嚏)OR(鼻塞)OR(咳嗽),THEN(有感冒症状)”这种医生诊断疾病的经验总结,最后显示出它“考虑”的可能性最高的病因,并以给出用药的建议而结束。第19页/共112页20医学数学化应用举例例1研究颅内高压与颅内容积的关系。
用兔作实验,采用脑内持续灌注生理盐水的方法造成兔急性颅内压增高,发现颅内压随容积增加呈S形曲线有限增长。能否利用数学方法找出一个方程来拟合这条从实验中得出的曲线?能否从理论上探讨一般规律呢?例2研究血液在动静脉血管中的流量Q 单位时间的血流量Q能否有一般的数学公式呢?
第20页/共112页21a为增长速率,b为最大值第21页/共112页22血液在血管中心处流得最快,管壁处流速为零,存在着从管心到管壁的速度递减,流过一个半径为r的圆环的流速为:
通过该圆环单位时间的血流量:
dQ=V(r)2πrdr单位时间血液总流量为:第22页/共112页231.2.数学模型一、什么是数学模型 数学模型就是对实际问题的一种数学表述。即,根据现实世界某对象特有的内在规律,进行必要的简化抽象,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。二、建立模型的一般步骤
1.数学化
2.建模3.反馈第23页/共112页24三.建立数学模型的要求:1、真实完整
1)真实的、系统的、完整的反映客观现象;
2)必须具有代表性;
3)具有外推性2、简明实用
模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。
3、适应变化
随着有关条件的变化和人们认识的发展,通过相关变量及参数的调整,能很好的适应新情况第24页/共112页25二、数学模型的分类根据应用领域和研究对象 经济模型、医学模型、地质模型、社会学模型、人口模型、交通模型、环境模型、生态模型等按照建立模型的数学方法几何模型、微分方程模型、图论模型、优化模型、概率模型、统计模型等第25页/共112页26其它的分类方法观察模型与决策模型确定型模型与随机模型连续模型与离散模型解析模型与仿真模型白箱模型,灰箱模型和黑箱模型第26页/共112页271.4经典数学及其模型
基础知识一元微积分常微分方程的求解偏微分方程的求解数学物理方法
主要内容2.1引例2.2生态模型2.3医学模型2.4室分析模型2.5扩散问题第27页/共112页28
引例例I细菌变化情况模型细菌的增长率与总数成正比.如果培养的细菌24小时内由100(单位),增长到400(单位),那么36小时后细菌数应该是多少?
例2体重变化模型某人摄人热量是每天2500大卡,其中1200大卡用于基本的新陈化谢.在健身训练中,他所消耗的大约是每天每千克体重16大卡,设以肪形式贮藏的热量100%地有效,而1干克脂肪含热量10000大卡.求此人的体重至随时间变化的规律.第28页/共112页29
2.2生态模型
生物种群生长模型自然生长曲线微生物菌落增长模型限制性生成曲线人口模型阻滞增长曲线第29页/共112页30一、生态模型一生物种群生长模型第30页/共112页31自然生长曲线马尔萨斯Malthus人口模型令er=Y,则N=cYt,即人口按几何级数增长第31页/共112页322、限制生长模型对于一个群体不可能无限制的增长,用b表示N的上界,即N=N(t)可以趋近于b,第32页/共112页33限制性生长曲线Mitscherlich模型第33页/共112页34第34页/共112页35阻滞增长曲线Logistic模型第35页/共112页36二、微生物菌落的增长模型在生物界中,微生物具有很高的繁殖率,以大肠杆菌为例,在37度下培养的牛奶中,分裂一次需要12.5分,若以通常20分钟分裂一次,则一个细菌在24小时后,可产生4.722×1021个,总重量达到4.722吨。但实际上一个培养基内细菌或其它微生物的一个菌落往往因缺乏空间、缺乏养分及毒物出现,培养基PH值变化的功能不会无限制生长。第36页/共112页37第37页/共112页38三、人口模型我国1982年末人口普查统计人口为10.319亿人,希望到2000年初人口控制在12亿,r应控制在多少?2001年末人口实际达到12.953亿,r是否在控制范围内。(根据我国人口政策,我们假设人口总数控制在16亿)第38页/共112页39严格地讲,讨论人口问题所建立的模型应属于离散型模型。1.模型的建立最早研究人口问题的是英国的经济系家马尔萨斯(1766—1834)。他根据百余年的人口资料,经过潜心研究,在1798年发表的《人口论》中首先提出了人口增长模型。他的基本假设是:任一单位时刻人口的增长量与当时的人口总数成正比。第39页/共112页40第40页/共112页41第41页/共112页42第42页/共112页例:人口预测和控制图1人口金字塔(数据来源:1990年上海市人口年龄结构。男左女右)第43页/共112页国际上通常将人口结构分为三类:(1)增长型(年轻型):图形上表现为底部宽,顶部狭窄,即少年儿童人口比高,老年人口比低,显示人口快速成长。此类型人口结构的特点是死亡率快速衰减,而出生率未改变,或仅缓慢降低的结果。第44页/共112页(2)静止型(成年型):图形上表现为各年龄组的比例较相似。这一类型人口结构的特点是低死亡率及接近更替水平的生育率。有当死亡率水平为千分之十至十五,妇女生育率低于2的情况存在至少20年,才会形成这类人口结构。大部分生活水准高,预期寿命长,及成长率低的发达国家属于此类型。第45页/共112页(3)缩减型(老年型):图形表现为顶部宽,底部相对较窄,显示一种负的人口成长结构。通常发生在长期死亡率超过出生率时。这种类型的人口通常面临低生育率和老龄化的问题。第46页/共112页/yearbook/2001nj/ziliao/11-11.htm
上海人口与计划生育网站第47页/共112页482.3医学模型神经刺激理论模型无移除的流行病模型流行病催化模型重金属毒物蓄积模型肿瘤生长模型颅内压与颅内容积的关系血流量模型血流动力学的基本方程第48页/共112页49一.无移除流行病模型设某种流行病感染(如呼吸道感染)有高度的传染力,但未严重到发生发生死亡或需要隔离的程度,感染通过一封闭团体内b个成人之间的接触而传播,感染者不因死亡、痊愈或隔离而被移除,则所有易感者最终都将变为感染者。第49页/共112页50二.重金属毒物蓄积模型
金属毒物对机体的致病性影响研究已很广泛和详尽,随着近代生物数学的发展,目前对毒物在体内的定量分析取得了很大的进展。尤其在应用数学模型这一方法来表达金属毒物在机体内的吸收、蓄积和排出这三者之间的数量关系,从而来预测在长期接触某一顶浓度的金属毒物时集体内的蓄积量,并与预测接触者是否发生慢性中毒和中毒的发生时间。最大蓄积量模型:第50页/共112页51最大蓄积量模型-推导吸收量——在生产环境中毒物的吸收量常常较为恒定,看作一个常数排出量——在吸收量确定的情况下,取决于该毒物的生物半衰期T1/2最大蓄积量——在吸收量和T1/2确定的情况下,体内蓄积量随时间的变化趋于一个极限值代谢动力学的一级动力学条件:S:t时刻的体内毒物的浓度K:毒物从体内排出的速度,负号表示排出求解上式:初始条件,t=0,s=s0,于是有:第51页/共112页52最大蓄积量模型-推导如果每天给一新的剂量s0,那么对于连续接触毒物后,任意时刻体内的蓄积量,就要对上式求积分:T趋于无穷时,体内蓄积量即为最大蓄积量:利用生物半衰期T1/2,求排出系数k:最大蓄积模型:第52页/共112页532、中金属毒物蓄积模型的应用第53页/共112页54第54页/共112页55第55页/共112页563.1、常用统计检验方法数理统计的基本内容
参数估计(置信区间估计)假设检验方差分析回归分析要求:课下自己掌握第56页/共112页57二、假设检验1.为什么要进行假设检验?
样本和总体之间或两次不同抽样之间必然有差异。样本和总体间的差异或者两次不同抽样间的差异可能有两方面的原因: A.抽样误差所至B.本质上的差异所至 那么差异究竟是合理的抽样误差造成的还是本质差异造成的,需要进行检验。这就是假设检验研究的内容。因此假设检验是对抽样误差的评估和处理。第57页/共112页58例一篇题为《重症肺炎并发DIC*29例》的文章中写道,有3例脑型病例,只有1例死亡。作者结论“一般脑型病死亡率高达57%,本组脑型病死亡率为33%,较低,…….本疗法对降低脑型病死率有重要意义。”假如将上述实验重复100次,每次均含有3例脑型病例,可能的死亡组合及几率如下:所以:在57%的总体死亡率情况下,至多死亡一人的概率为0.316179+0.079507=0.395686≈40%,可见进行100次实验,就有40次病死率不超过33%。第58页/共112页59原文结论难以成立的理由在57%的病死率的情况下,3个病例中仅死亡1例的概率高达40%,因此原文病死率为33%的结果偶然性很大,不能认为该疗法对降低病死率有统计学意义。
那么,30个病例中,死亡10例,是否可下这样的结论:本组脑型病死亡率为33%,低于57%的一般脑型病死亡率,可见本疗法对降低脑型病死率有重要意义 可求得30人死亡人数小于等于10人的概率为0.0077。
第59页/共112页60假设检验的基本思想-小概率原理
某事件发生的概率很小,则认为在一个抽样中实际不可能发生。作出一个假设,在该假设条件下计算某事件的概率,如果概率小,但事件发生了,则认为所作假设不合理,拒绝假设。第60页/共112页611.建立假设H0
检验假设H0(无效假设)备择假设H1(要求:H0和H1对立)2.确定检验水准检验水准即是允许的最大误差常用的检验水准为:α=0.05较高要求的检验水准为:α=0.01也可选择其他水准,必须在结论时标明3.选定统计方法并计算检验统计量要根据检验的目的确定统计推断的统计量,并计算该统计量的值,从而求得概率P4.界定P值并作结论
事先确定的检验水准界定P值,并据此认定对H0的取舍P≤α拒绝H0,接受H1(称差异有统计学意义)P>α不拒绝H0,(称差异尚无统计学意义)第61页/共112页623.常见的假设检验方法u检验
t检验F检验χ2检验秩次检验Ridit分析第62页/共112页63二、最小二乘法与经验公式回归分析是用数理统计方法处理曲线拟合问题,和曲线拟合类似。但是它除了要给出方程的待定系数的估计值外,还要对估计值进行检验给出估计值的可靠性,即相关系数R。
R愈接近于1,则回归方程的拟合度愈好。第63页/共112页64回归分析无论是在经济管理、社会科学还是在工程技术或医学、生物学中,回归分析都是一种普遍应用的统计分析与预测技术。回归分析是寻找不完全确定的变量间的数学关系式并进行统计推断,能提示多个自变量与因变量之间的内在关系,以及判断自变量的选择是否恰当等作用,为人们的生产起指导作用。第64页/共112页65回归分析的步骤绘制散点图确定回归方程的基本形式(确定方程基本形式不仅仅是个数学问题,一定要根据问题内在的规律和散点图为依据)应用最小二乘法的原理或其他一些判别原理回归确定回归系数(或偏回归系数)回归系数或(偏回归系数)的假设检验第65页/共112页66主要内容直线相关与线性回归指数回归二次函数回归第66页/共112页671、直线相关与线性回归变量间关系问题:年龄~身高、肺活量~体重、药物剂量与动物死亡率等。相关与回归的概念:依存关系:因变量(dependentvariable)Y与自变量(independentvariable)X之间有数量依存关系,Y随X的变化而变化。——回归分析互依关系:反映两变量X和Y之间彼此关联的程度。
——
相关分析第67页/共112页68直线回归
第一:描散点图第68页/共112页69第二:列直线回归方程
a:截距(intercept),直线与Y轴交点的纵坐标。b:斜率(slope),回归系数(regressioncoefficient)。意义:X每改变一个单位,Y平均改变b个单位。第69页/共112页70第三:回归方程参数的计算
最小二乘法原则(leastsquaremethod):使各散点到直线的纵向距离的平方和最小。即使最小。因为直线一定经过“均数”点第70页/共112页71第三:回归方程参数的计算第71页/共112页72相关系数第72页/共112页73相关系数第73页/共112页74例3.1某医院研究某种代乳粉的营养价值,用大白鼠作实验,得白鼠进食量(克)和增加体重(克)之间的关系数据如下X820780720867690787934679639820y165158139180134167186145120158R=0.69395第74页/共112页75例3.2冠心病患者的血清脂蛋白检测冠状动脉粥样硬化性心脏病患者的血清中常出现β-脂蛋白增高,α-脂蛋白降低,它们之间有无规律呢?β460480476490510520470464α240220230210190185215235R=-9558第75页/共112页76例3.3小儿体重与体表面积的关系要测小儿体表面积是非常复杂的,但在药物代谢、水电解质平衡、基础代谢、心搏出量、每分钟呼吸量、肾小球过滤等都需要指导体表面积,小儿体重可以很容易测量,现研究能否通过小儿体重来计算体表面积呢?实验数据如下:体重x23.3581015203040体表面积y0.150.20.250.350.450.60.81.051.3第76页/共112页77R=0.9962第77页/共112页78指数回归有些问题变量间的关系是非线性关系的,如生物生长曲线呈指数关系,可调整数据将指数函数化为线性函数,再用最小二乘法求解经验公式设y=f(t)=kemt当k>0,两边取对数,可得:lgy=(mlge)t+lgk令lgk=a,mlge=b,这样就是t的线性函数了第78页/共112页79例3.5、药物浓度在体内的变化规律某种新药对一受试者一次静脉注射2克的剂量,测得不同时刻血液中药物浓度如下表:1234568100.280.240.210.180.160.140.10.08第79页/共112页80第80页/共112页81显然曲线接近于指数分布,现对浓度c求对数:t123456810
-lgc0.5528420.6197890.6777810.7447270.795880.85387211.09691第81页/共112页82二次函数型回归测得数据在一条抛物线的临近,则经验公式可以设:y=ax2+x+c第82页/共112页83例3.4学龄前儿童智能检测根据《宁夏医学》〔1986.12)载宁夏、银川、同心地区1508名学前儿童采用50项智能测验,其平均得分,数据如下表:年龄44.555.566.57平均得分27.232.435.539.140.842.139.5第83页/共112页84第84页/共112页853.3概率模型在医学中的应用一、基本概率的应用例1在一定条件下已知某病治疗有效率为50%,试求在10个病人中有8个以上有效的概率。第85页/共112页86二计量诊断模型第86页/共112页87第87页/共112页883.3概率模型在医学中的应用例3.6乳腺肿块的鉴别诊断某病人,女,35岁,有乳腺肿块,肿块表面整齐,偏硬,近期来未见明显增大,边界不清,长度约2厘米,要求鉴别属于:乳腺癌/纤维乳腺瘤/其他乳腺疾病。
为了讨论乳腺肿块鉴别情况,查阅了186个病例,对三种乳腺疾病主要症候表现及其概率统计如下表第88页/共112页89实例第89页/共112页90症候表现乳腺癌d129例纤维瘤d292例乳腺病d365例年龄<40s110.13790.80430.8308≥40S120.86210.19570.1692肿块表面整齐S210.0690.48910.4615不整齐S220.9310.51090.5385硬度中S310.13790.06520.1846偏硬S320.55170.8370.7533硬S330.13040.09780.0616增大速度慢S410.10340.04350.2462中S420.55170.85870.7077快S430.34480.09780.0461边界清楚S510.03450.55430.2923欠清楚S520.82760.4130.5538不清楚S530.13790.03260.1539肿块长度≤2.75S610.2060.750.8615〉2.75S620.79310.250.1385第90页/共112页91依据上表可求得:第91页/共112页92临床决策临床医生经常为病人的诊断、治疗作出决定。这些临床决定亦即临床决策(clinicaldecision)。所谓决策(decisionmaking)就是为达到同一目标在众多可以采取的方案中选择最佳方案。在临床处理病人的病情时,由于疾病临床表现复杂多变,诊治方法多种,有些药物还可能产生一些不良反应,患者的心理变化等等,促使医师在考虑上述情况后作出全面和合理的选择。决策分析的基本步骤有以下四步:1.供临床选择的治疗方法有时很多,此时要筛除一些“劣”的决策,有利于下一步的分析。2.确定各决策可能的后果,并设置各种后果发生的概率。3.确定决策人的偏爱,并对效用赋值。4.在以下三步基础上去选择决策人最满意的决策,即期望效用最大的决策。第92页/共112页93举例:决策树的应用:例:胰腺癌常常难以在疾病的早期作出诊断,当发现时癌肿已有转移,患者多在短期内死亡。最可能患胰腺癌者包括40岁以上,中腹部疼痛持续1~3周的人。假设这类人中胰腺癌的发生率为12%。如有一种不冒什么风险的早期诊断方法对胰腺癌的检出率为80%(敏感度),但对有类似症状的非胰腺癌患者的假阳性率为5%,用此法诊断确诊的胰腺癌患者手术死亡率为10%,治愈率为45%。根据上述疾病概率,诊断概率和死亡、治愈概率,如对1000人进行诊断、治疗,其所获得的益处,是否比不进行诊断检查和手术更大?可以用一个决策树(下图)进行分析比较。第93页/共112页94由JCSisson等人的一个关于胰腺癌的决策树模型第94页/共112页95从以上决策树可见,不作该项检查的死亡者为12例,均为胰腺癌病人。用该项检查手术后死亡12.5人,其中有5例为非胰腺癌病人。而且新的检查使44例非胰腺癌患者的胰腺功能因手术而可能受到损害。因此这项检查对病人是弊大于利,不宜使用。第95页/共112页96治疗效益对于一种治疗方法或者一种新药品,对其治疗效果的评价是至关重要的,如何评价治疗效果往往从两个方面治疗效益和成本。对于治疗效益来说又有绝对效益和相对效益,治疗的相对效益是指临床试验的组间疾病事件发生率的比例差异;而治疗的绝对效益是指用某药物治疗多少病人方能防止1例主要事件的发生。对治疗效益评价的意义:根据随机化临床试验结果的相对效益可用以指导其他人群采用此种治疗时进行相对效益的估算。较合理的估计绝对效益的方法:一方面根据临床试验所反映的相对危险降低程度,同时根据具体病人的疾病绝对危险降低程度进行估计第96
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB 4234.3-2024外科植入物金属材料第3部分:锻造钛-6铝-4钒合金
- 高考物理总复习专题七电场第2讲电势能、电势、电势差练习含答案
- 《品牌规划方案》课件
- 高中信息技术 《虚拟现实初探》教案 沪教版选修5
- 八年级物理下册 第九章 压强 第1节 压强第2课时 压强的综合运用教案(新版)新人教版
- 2024年五年级数学上册 三 游三峡-小数除法信息窗2 除数是小数的小数除法除法教案 青岛版六三制
- 2024-2025版新教材高中化学 第2章 第2节 第2课时 离子反应教案 鲁科版必修第一册
- 2023九年级数学下册 第24章 圆24.4 直线与圆的位置关系第3课时 切线长定理教案 (新版)沪科版
- 2024年七年级生物下册 2.1.3营养物质的吸收和利用教学设计 (新版)冀教版
- 应急管理工作格言
- 高风险作业施工安全措施
- 病毒学-流感病毒的变异与预防策略教学教案
- 外科手术中肝脏切除技术讲解
- 机动车驾驶培训汽车安全驾驶课件
- 驾校年度安全生产目标方案
- 2024年插花花艺师理论知识考试题库(含答案)
- 干部履历表(中共中央组织部2015年制)
- 自身免疫性脑炎护理
- 2024年基因编辑技术的伦理问题
- “订餐协议书:团体订餐服务合作协议”
- 材料力学课程导学与考研指导
评论
0/150
提交评论