东南大学数字通信试卷(附答案)-2023修改整理_第1页
东南大学数字通信试卷(附答案)-2023修改整理_第2页
东南大学数字通信试卷(附答案)-2023修改整理_第3页
东南大学数字通信试卷(附答案)-2023修改整理_第4页
东南大学数字通信试卷(附答案)-2023修改整理_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

千里之行,始于足下让知识带有温度。第第2页/共2页精品文档推荐东南大学数字通信试卷(附答案)东南高校考试卷(A卷)

课程名称数字通信考试学期04-05-2得分

适用专业无线电工程系考试形式闭卷考试时光长度120分钟共页

SectionA:TrueorFalse(15%)

1.1.Whentheperiodisexactly2m,thePNsequenceiscalleda

maximal-length-sequenceorsimplym-sequence.

2.2.Foraperiodofthemaximal-lengthsequence,theautocorrelation

functionissimilartothatofarandombinarywave.

3.3.Forslow-frequencyhopping,symbolrateRsofMFSKsignalisan

integermultipleofthehoprateRh.Thatis,thecarrierfrequencywillchangeorhopseveraltimesduringthetransmissionofonesymbol.4.4.Frequencydiversitycanbedonebychoosingafrequencyspacing

equaltoorlessthanthecoherencebandwidthofthechannel.

5.5.Themutualinformationofachannelthereforedependsnotonlyon

thechannelbutalsoonthewayinwhichthechannelused.

6.6.Shannon’ssecondtheoremspecifiesthechannelcapacityCasa

fundamentallimitontherateatwhichthetransmissionofreliableerror-freemessagescantakeplaceoveradiscretememorylesschannelandhowtoconstructagoodcode.

7.7.Thesyndromedependsnotonlyontheerrorpattern,butalsoon

thetransmittedcodeword.

8.8.Anypairofprimitivepolynomialsofdegreemwhosecorresponding

shiftregistersgeneratem-sequencesofperiod2m-1canbeusedtogenerateaGoldsequence.

9.9.AnysourcecodesatisfiestheKraft-McMillaninequalitycanbea

prefixcode.

10.10.Letadiscretememorylesssourcewithanalphabet?haveentropy

H?andproducesymbolsonceeverysTseconds.Letadiscrete()

memorylesschannelhavecapacityandbeusedonceevery

CcT

seconds.Then,if

()?

sc

HC

TT,thereexistsacodingschemeforwhich

thesourceoutputcanbetransmittedoverthechannelandbereconstructedwithanarbitrarilysmallprobabilityoferror.SectionB:Fillintheblanks(35%)

1.1.Thetwocommonlyusedtypesofspread-spectrummodulation:

and.

2.2.Apseudo-noise(PN)sequenceisaperiodicbinarysequencewitha

waveformthatisusuallygeneratedbymeansofa

.

3.3.Dueto,wirelesscommunicationisnolonger

idealizedAWGNchannelmodel.

4.4.Therearethefollowingdiversitytechniquesinourdiscussion,

diversity,diversity,diversity.

5.5.Threemajorsourcesofdegradationinwirelesscommunications

are

,,and;thelattertwoarebyproductsofmultipath.

6.6.TheinformationcapacityofacontinuouschannelofbandwidthB

hertz,perturbedbyadditivewhiteGaussiannoiseofpowerspectraldensityN0/2andlimitedinbandwidthtoB,isgivenby

.

7.7.Theorsyndrome)isdefined

as:.

8.8.ForLinearBlockCodes,CorrectallerrorpatternsofHamming

weightw(e)≤t2,ifandonlyif.

9.9.TCMCombineandasasingleentityto

attainamoreeffectiveutilizationoftheavailable

and.

10.10.InaDS/BPSKsystem,thefeedbackshiftregisterusedto

generatethePNsequencehaslengthm=19,thantheprocessinggainis.

11.11.LetXrepresenttheoutcomeofasinglerollofafairdie(骰子).

TheentropyofXis.

12.12.Avoice-gradechannelofthetelephonenetworkhasabandwidth

of3.4kHz,theinformationcapacityofthetelephonechannelforasignal-to-noiseratioof30dBis,theminimumsignal-to-noiseratiorequiredtosupportinformation

transmissionthroughthetelephonechannelattherateof9,600b/sis.

13.13.Foram-sequencegeneratedbyalinearfeedbackshiftregisterof

length5,thetotalnumberofrunsis,numberoflength-tworunsis,theautocorrelationR(j)=(j≠0).

14.14.Ifthecoherentbandwidthofthechannelissmallcomparedtothe

messagebandwidth,thefadingissaidtobe.Ifthecoherencetimeofthechannelislargecomparedtothedurationofthesignalduration,thefadingissaidtobe.

15.15.Asourceemitsoneoffivesymbolswithprobabilities1/2,1/4,1/8,1/16,1/16,respectively.Thesuccessivesymbolsemittedbythesourcearestatisticallyindependent.Theentropyofthesourceis01234,,

sandssss.Theaveragecode-wordlengthforanydistortionlesssourceencodingschemeforthissourceisboundedas.

16.16.Forafinitevarianceσ2

,therandomvariablehasthelargestdifferentialentropyattainablebyanyrandomvariable,andtheentropyisuniquelydeterminedbythe.

17.17.SetpartitioningdesignpartitionstheM-aryconstellationof

interestsuccessivelyandhasprogressivelylargerincreasing

betweentheirrespectivesignalpoints.18.18.codeandcodehaveanerror

performancewithinahair’sbreadthofShannon’stheoreticallimitonchannelcapacityinaphysicallyrealizablefashion.

19.19.Whenaninfinitenumberofdecodingerrorsarecausedbyafinite

numberoftransmissionerrors,theconvolutionalcodeiscalleda.

SectionC:Problems(50%)

1.Aradiolinkusesapairof2mdishantennaswithanefficiencyof70percenteach,astransmittingandreceivingantennas.Otherspecificationsofthelinkare:

Transmittedpower=2dBW(notincludethepowergainofantenna)Carrierfrequency=12GHz

Distanceofthereceiverformthetransmitter=200mCalculate(a)thefree-spaceloss,

(b)thepowergainofeachantenna,

(c)thereceivedpowerindBW.

2.Acomputerexecutesfourinstructionsthataredesignatedbythecodewords(00,01,10,11).Assumingthattheinstructionsareusedindependentlywithprobabilities(1/2,1/8,1/8,1/4).

(a)(a)ConstructaHuffmancodefortheinstructions.

(b)(b)CalculatethepercentagebywhichthenumberofbitsusedfortheinstructionsmaybereducedbytheuseofaHuffmancode.

3.Considerthe(15,8)cycliccodedefinedbythegeneratorpolynomial

37()1gXXXX=+++

(a)(a)Developtheencoderforthiscode.

(b)(b)Getthegeneratormatrixandtheparity-checkmatrix.

(c)(c)Constructasystematiccodewordforthemessagesequence10110011.

(d)(d)Thereceivedwordis110001000000001,determinethesyndromepolynomials(X)forthisreceivedword.

4.Considertherater=1/3,constraintlengthK=3convolutionalencoder.Thegeneratorsequencestheencoderareasfollows:

(1)(1,0,0)g=,

,(2)(1,0,1)g=(3)

(1,1,1)g=(a)(a)Drawtheblockdiagramoftheencoder.(b)(b)Constructthecodetree

(c)(c)Constructthesignal-flowgraphandobtaintheinput-outputstateequations.

(d)(d)Determinetheencoderoutputproducedbythemessagesequence10111….

(e)(e)Thereceivedsequenceis110,001,101,110,000,011.UsetheViterbi

algorithmtocomputethedecodedsequence.答案

SectionA:TrueorFalse(每题1.5分,共15分)

11.1.Whentheperiodisexactly2m

,thePNsequenceiscalleda

maximal-length-sequenceorsimplym-sequence.(F)

12.2.Foraperiodofthemaximal-lengthsequence,theautocorrelation

functionissimilartothatofarandombinarywave.(T)

13.3.Forslow-frequencyhopping,symbolrateRsofMFSKsignalisan

integermultipleofthehoprateRh.Thatis,thecarrierfrequencywillchangeorhopseveraltimesduringthetransmissionofonesymbol.(F)14.4.Frequencydiversitycanbedonebychoosingafrequencyspacing

equaltoorlessthanthecoherencebandwidthofthechannel.(F)15.5.Themutualinformationofachannelthereforedependsnotonlyon

thechannelbutalsoonthewayinwhichthechannelused.(T)16.6.Shannon’ssecondtheoremspecifiesthechannelcapacityCasa

fundamentallimitontherateatwhichthetransmissionofreliableerror-freemessagescantakeplaceoveradiscretememorylesschannelandhowtoconstructagoodcode.(F)

17.7.Thesyndromedependsnotonlyontheerrorpattern,butalsoon

thetransmittedcodeword.(F)

18.8.Anypairofprimitivepolynomialsofdegreemwhosecorresponding

shiftregistersgeneratem-sequencesofperiod2m-1canbeusedtogenerateaGoldsequence.(F)

19.9.AnysourcecodesatisfiestheKraft-McMillaninequalitycanbea

prefixcode.(F)

20.10.Letadiscretememorylesssourcewithanalphabet?have

entropy()H?andproducesymbolsonceeverysTseconds.Letadiscretememorylesschannelhavecapacityandbeusedonceeveryseconds.Then,if

CcT()sc

HTTC

?≥,thereexistsacodingschemeforwhichthesourceoutputcanbetransmittedoverthechannelandbereconstructedwithanarbitrarilysmallprobabilityoferror.(F)

SectionB:Fillintheblanks(每空1分,共35分)

20.1.Thetwocommonlyusedtypesofspread-spectrummodulation:

directsequenceandfrequencyhopping.

21.2.Apseudo-noise(PN)sequenceisaperiodicbinarysequencewitha

noiselikewaveformthatisusuallygeneratedbymeansofafeedbackshiftregister.

22.3.Duetomultipath,wirelesscommunicationisnolongeridealized

AWGNchannelmodel.

23.4.Therearethefollowingdiversitytechniquesinourdiscussion,

Frequencydiversity,Timediversity,Spacediversity.

24.5.Threemajorsourcesofdegradationinwirelesscommunications

areco-channelinterference,fading,anddelayspread;thelattertwoarebyproductsofmultipath.

25.6.TheinformationcapacityofacontinuouschannelofbandwidthB

hertz,perturbedbyadditivewhiteGaussiannoiseofpowerspectraldensityN0/2andlimitedinbandwidthtoB,isgivenby

20log(1)bitspersecond=+P

CBNB.

26.7.Theerror-syndromevector(orsyndrome)isdefinedas:s=rHT

27.8.ForLinearBlockCodes,CorrectallerrorpatternsofHamming

weightw(e)≤t2,ifandonlyifdmin≥2t2+1.

28.9.TCMCombinecodingandmodulationasasingleentitytoattaina

moreeffectiveutilizationoftheavailablebandwidthandpower.

29.10.InaDS/BPSKsystem,thefeedbackshiftregisterusedto

generatethePNsequencehaslengthm=19,thantheprocessinggainis57dB.

30.11.LetXrepresenttheoutcomeofasinglerollofafairdie(骰子).

TheentropyofXislog2(6)=2.586bits/symbol.

31.12.Avoice-gradechannelofthetelephonenetworkhasabandwidth

of3.4kHz,theinformationcapacityofthetelephonechannelforasignal-to-noiseratioof30dBis33.9kbits/second,theminimumsignal-to-noiseratiorequiredtosupportinformationtransmissionthroughthetelephonechannelattherateof9,600b/sis7.8dB.32.13.Foram-sequencegeneratedbyalinearfeedbackshiftregisterof

length5,thetotalnumberofrunsis16,numberoflength-tworunsis4,theautocorrelationR(j)=-1/31(j≠0).

33.14.Ifthecoherentbandwidthofthechannelissmallcomparedtothe

messagebandwidth,thefadingissaidtobefrequencyselective.Ifthecoherencetimeofthechannelislargecomparedtothedurationofthesignalduration,thefadingissaidtobetimenonselectiveortimeflat.34.15.Asourceemitsoneoffivesymbolswithprobabilities1/2,1/4,1/8,1/16,1/16,respectively.Thesuccessive

symbolsemittedbythesourcearestatisticallyindependent.Theentropyofthesourceis15/8=1.875bits/symbol01234,,sand

ssss.Theaveragecode-wordlengthforanydistortionlesssourceencodingschemeforthissourceisboundedas?≥()LH.

35.16.Forafinitevarianceσ2,theGuassianrandomvariablehasthe

largestdifferentialentropyattainablebyanyrandomvariable,andtheentropyisuniquelydeterminedbythevarianceofX.

36.17.SetpartitioningdesignpartitionstheM-aryconstellationof

interestsuccessivelyandhasprogressivelylargerincreasingminimumEuclideandistancebetweentheirrespectivesignalpoints.

37.18.TurbocodesandLow-densityparity-checkcodeshaveanerror

performancewithinahair’sbreadthofShannon’stheoreticallimitonchannelcapacityinaphysicallyrealizablefashion.

38.19.Whenaninfinitenumberofdecodingerrorsarecausedbyafinite

numberoftransmissionerrors,theconvolutionalcodeiscalledacatastrophiccode.

SectionC:Problems

1.Aradiolinkusesapairof2mdishantennaswithanefficiencyof70percenteach,astransmittingandreceivingantennas.Otherspecificationsofthelinkare:

Transmittedpower=2dBW(notincludethepowergainofantenna)Carrierfrequency=12GHz

Distanceofthereceiverformthetransmitter=200mCalculate(a)thefree-spaceloss,

(b)thepowergainofeachantenna,

(c)thereceivedpowerindBW.(本题10分)

Solution:

(a)Free-spaceloss2

1010log4λπ??

=????

freespaceLd

8910310/12/1020log1004200π??

×==??××??

dB?

(b)Thepowergainofeachantennais1010102

410log10log10logπλ××??

==????

trAGG()102

8940.710log310/12/1046.46ππ??

×××??=??×??

=dB

(c)Thereceivedpower=transmittedpower+Gt+Gr+free-spaceloss=2+46.46+46.46+(-100)=-5.08dBW

2.Acomputerexecutesfourinstructionsthataredesignatedbythecode

words(00,01,10,11).Assumingthattheinstructionsareusedindependentlywithprobabilities(1/2,1/8,1/8,1/4).

(c)(a)ConstructaHuffmancodefortheinstructions.

(d)(b)Calculatethepercentagebywhichthenumberofbitsusedforthe

instructionsmaybereducedbytheuseofaHuffmancode.

(本题10分)

Solution:

(a)Aslowaspossible

Ashighaspossible

ComputercodeProbabilityHuffmanCode

001/21

111/401

000

011/8

101/8001

(e)(c)Thenumberofbitsusedfortheconstructionsbasedonthe

computercode,inaprobabilisticsense,isequalto

3.Considerthe(15,8)cycliccodedefinedbythegeneratorpolynomial

37()1gXXXX=+++842()1hXXXXX(++++)

=(e)(a)Developtheencoderforthiscode.

(f)(b)Getthegeneratormatrixandtheparity-checkmatrix.

(g)(c)Constructasystematiccodewordforthemessagesequence10110011.

(h)(d)Thereceivedwordis110001000000001,determinethesyndromepolynomials(X)forthisreceivedword.(本题15分)Solution:(a)

(b)generatormatrix

37248223533464

4

5

7

55686679177810()1()()()()()()()=+++=+++=+++=+++=+++=+++=+++=+++gXXXXXgXXXXX91011

12314

XgXXXXXXgXXXXXXgXXXXX

XgXXXXXXgXXXXXXgXXXXX

110100010000000011010001000000001101000100000000110100010000000011010001000000001101000100000000110100010000000011010001?????

????

??

?′=???

???????????G1101000100000000110100010000000011010001000000001101000100001101110000010000110111000001001110011000000101010001000

1?????

????

??

?=???

???????????

GParity-checkmatrix

81467891578910

1

2

6

8

9

10

1113791011()1()()()XhXXXXXXhXXXXXXXhXXXXXX

XhXXXXXX????=++++=++++=++++=++++

121481011121315911121141610121314

()()()3XhXXXXXXXhXXXXXXXhXXXXXX???=++++=++++=++++

100010111000000010001011100000001000101110000'0

00100010111000000010001011100000001000101110000000100010111??????????=????????????H1000000100010110100000110011100010000011001110

0010001011100000001000101110000000100010111000000010001011

1??????????=???????????

?

H(c)F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论