CAN总线在张紧器驱动监控系统中的应用-设计应用_第1页
CAN总线在张紧器驱动监控系统中的应用-设计应用_第2页
CAN总线在张紧器驱动监控系统中的应用-设计应用_第3页
CAN总线在张紧器驱动监控系统中的应用-设计应用_第4页
CAN总线在张紧器驱动监控系统中的应用-设计应用_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档-下载后可编辑CAN总线在张紧器驱动监控系统中的应用-设计应用铺管船用张紧器是海底油气管道铺设的关键配套设备,由夹紧系统、驱动系统、监控系统组成,我国从上世纪90年代开始铺管船用张紧器的研究,1998年完成胜利油田滩海铺管船用张紧器项目,2022年开始深水铺管张紧器的研究。张紧器驱动系统由上下两套履带驱动系统组成,在滩海铺管船用张紧器中,采用上下两履带各用两个液压马达驱动的方式来输送管线,但深水铺管的张紧力远远大于滩海铺管所需的张紧力,若采用液压马达驱动,则进出油管直径较大,由泵站到马达的管路设计、布置难度大。相对而言,电机安装方便、控制方式简单,所以采用四个交流伺服电机代替液压马达驱动张紧器。张紧器在工作过程中上下履带同步运动,并确保管线的张力在一定范围内,这就要求监控系统对交流伺服电机的控制信号具有实时性强、同步性好的特点,同时,铺管船总控制室与张紧器距离约150m,要求监控系统在信号传输过程中有良好的抗干扰能力。本文通过分析CAN总线特点,将CAN总线技术应用于张紧器驱动监控系统中。CAN总线技术为张紧器驱动监控系统提供了一个实时可靠的信息交互网络,解决了传统I/O模块多,干扰严重、系统软件复杂、硬件兼容性差等问题,提高了信号传输实时性和可靠性,便于安装、调试和维护。1CAN总线的特点及应用

CAN作为一种串行总线,特别适用于含有一群智能设备的系统或子系统中,总线上任一个节点均可在任一时刻主动向网络上的其他节点发送数据,而从不分主从,通信灵活,总线上的节点可分为不同的优先级,可以满足不同的实时要求。采用非破坏性总线仲裁,当两节点同时向总线发送信息时,优先级低的节点主动停止数据发送,而优先级高的节点可不受影响地继续发送数据。具有实时性强、可靠性高、通信速率快、结构简单、互操作性好、总线协议具有完善的错误处理机制、灵活性高和价格低廉等特点,在工业测控和工业自动化等领域有很大的应用前景。

在欧美等国,CAN总线已被广泛地应用于汽车、火车、轮船、机器人、智能楼宇、机械制造、数控机床、各种机械设备、交通管理、传感器、自动化仪表等领域。

在国内,CAN总线技术被大量地应用于工农业监控、电厂测控、火灾报警、变电站控制、煤炭综合监控等。2张紧器驱动监控系统

电机驱动上、下履带运动,在摩擦力的作用下拖动管线运动,正常铺管速度为30m/min,但在铺管过程中,受风浪影响,当船上升时,管线将承受很大拉力,当拉力超过昀大许用拉力值Fmax时,造成管线破坏或使铺管船定位锚走锚造成事故;当船下降时,管线承受拉力减小,若拉力值小于昀小拉力值Fmin时,管线将承受很大弯曲应力,该应力将超过管线材料的屈服极限,从而引起管线产生塑性变形。这就要求管线在铺设过程中受张紧力F范围为:FminFFmax。所以电机在工作过程中除驱动履带进行正常铺管外,还应在船上升时快速放管,船下降时放慢铺管速度直至停止或者收管,时刻保持张紧力在规定范围内。

驱动监控系统对电机的监控为实时过程,通过采集张紧力、电机转速等信息,实时控制电机的运行,且四个交流伺服电机具有良好的同步性。监控系统结构如图1所示

单片机与CAN总线连接方式有两种:片外连接和片内集成。传统的方式是将CPU与CAN总线控制器和总线收发器相连后再接入总线网络,这样使CPU外围电路复杂化,整个系统受外部影响较大。因此本系统选用其中以SiliconLaboratories公司的C8051F040型单片机,它在一块芯片上集成了64KBFlash、4352BRAM、CAN控制器2.0、2个串行接口、5个16位定时器、12位A/D转换器、8位A/D转换器及12位D/A转换器等。为进一步提高系统的抗干扰能力,在CAN控制器引脚CANTX、CANRX和收发器PCA82C250之间并不是直接相连,而是通过由高速光耦6N137构成隔离电路后再与PCA82C250相连[9],这样可以很好的实现总线上各节点的电气隔离。

为保护PCA82C250免受过电流冲击,在其CANH和CANL引脚各自通过一个5?的限流电阻与CAN总线相连,在CANH和CANL与地之间各联一个瞬态电压抑制二极管。为防止总线上的高频干扰和电磁辐射,CANH和CANL与地之间各自接一个30pF滤波电容。硬件接口电路如图2所示。此外,操作员通过触摸屏幕设置参数,通过LCD显示器监视系统各个参数。电机控制单元采用:单片机—变频器—交流伺服电机的控制方式,信号通过CAN总线对变频器进行控制进而控制电机的运行状况。

CAN通信软件设计张紧器驱动监控系统整个监控过程为实时采集电机转速信息、张紧力F的大小,若FFmax则电机加速送管;若FFmin则减速送管,使张紧力保持在Fmin~Fmax之间。控制流程图如图3所示。

开始

由主控流程图可以看出,软件设计的关键在于采集速度、张紧力的值和发送控制信号,所以,基于CAN的通信至关重要。CAN通信系统的软件设计包括系统初始化、发送程序、接收程序。在完成对所有报文对象初始化后,程序进入发送/接收阶段。CAN报文的发送是个自动过程,由CAN控制器自动完成。用户只需要根据接收到的远程帧的识别符,将对应的数据转移到发送缓冲寄存器,然后将此报文对象的编码命令请求寄存器启动发送即可。发送程序结构如图4所示。

CAN报文的接收也是由CAN控制器自动完成,当接收到发送完标志位后,程序从接收缓冲器中读取接收的数据。为提高系统运行效率,接收过程采用中断的方式实现。接收程序结构如图4所示。

4结论

深水铺管张紧器工作条件恶劣,外部环境易对监控系统信号造成干扰,本文将CAN总线技术运用于船用张紧器驱动监控系统中,重点介绍系统设计方案、CAN与单片机硬件接口设计、软件设计等内容。解决了传统电机控制方式中实时性差、响应时间长、多电机控制同步性差、信号传输抗干扰能力差的缺点,保证了张紧器对管线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论