第四章道路交通流理论_第1页
第四章道路交通流理论_第2页
第四章道路交通流理论_第3页
第四章道路交通流理论_第4页
第四章道路交通流理论_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章道路交通流理论第1页,共50页,2023年,2月20日,星期二§4-1概述交通流理论是运用物理学与数学的定律来描述交通特征的一门边缘科学,是交通工程学的基础理论。它用分析的方法阐述交通现象及其机理,从而使我们能更好地掌握交通现象及其本质,并使城市道路与公路的规划设计和营运管理发挥最大的功效。

一、四种交通流理论

二、当前交通流理论的主要内容

三、交通流的特性

第2页,共50页,2023年,2月20日,星期二1.概率统计分布的应用;2.随机服务系统理论(排队论)的应用;3.流体力学模拟理论(波动理论)的应用;4.跟驰理论(动力学模拟理论)的应用。一、四种交通流理论第3页,共50页,2023年,2月20日,星期二二、当前交通流理论的主要内容交通流量、速度和密度的相互关系及测量方法交通流的统计分布特性

排队论的应用跟驰理论驾驶员处理信息的特性交通流的流体力学模拟理论交通流模拟第4页,共50页,2023年,2月20日,星期二三、

交通流的特性

(一)交通设施种类(二)连续流特征1.总体特征2.数学描述3.连续交通流的拥挤分析(三)间断流特征第5页,共50页,2023年,2月20日,星期二(一)交通设施种类交通设施从广义上被分为连续流设施与间断流设施两大类。连续流主要存在于设置了连续流设施的高速公路及一些限制出入口的路段。间断流设施是指那些由于外部设备而导致了交通流周期性中断的设置。第6页,共50页,2023年,2月20日,星期二1.总体特征交通量Q、行车速度、车流密度K是表征交通流特性的三个基本参数。此三参数之间的基本关系为:式中:Q——平均流量(辆/h);——空间平均车速(km/h);K—平均密度(辆/km)。交通流模型关系曲线图第7页,共50页,2023年,2月20日,星期二能反映交通流特性的一些特征变量:(1)极大流量Qm,就是Q-V曲线上的峰值。(2)临界速度Vm,即流量达到极大时的速度。(3)最佳密度Km,即流量达到极大时的密量。(4)阻塞密度Kj,车流密集到车辆无法移动(V=0)时的密度。(5)畅行速度Vf,车流密度趋于零,车辆可以畅行无阻时的平均速度。第8页,共50页,2023年,2月20日,星期二第9页,共50页,2023年,2月20日,星期二(1)速度与密度关系格林希尔茨(Greenshields)提出了速度一密度线性关系模型:当交通密度很大时,可以采用格林柏(Grenberg)提出的对数模型:式中:Vm—对应最大交通量时速度。当密度很小时,可采用安德五德(Underwood)提出的指数模型:

式中:Km—为最大交通量时的速度。2.数学描述第10页,共50页,2023年,2月20日,星期二第11页,共50页,2023年,2月20日,星期二(2)流量与密度的关系(3)流量与速度关系综上所述,按格林希尔茨的速度—密度模型、流量—密度模型、速度—流量模型可以看出,Qm、Vm和Km是划分交通是否拥挤的重要特征值。当Q≤Qm、K>Km、V<Vm时,则交通属于拥挤;当Q≤Qm、K≤Km、V≥Vm时,则交通属于不拥挤。例第12页,共50页,2023年,2月20日,星期二解:由题意可知:当K=0时,V=Vf=88km/h,当V=0时,K=Kj=55辆/km。则:Vm=44Km/h,Km=27.5辆/km,Qm=VmKm=1210辆/h。由Q=VK和V=88-1.6K,有Q=88K-1.6K2(如图)。当Q=0.8Qm时,由88K-1.6K2=0.8Qm=968,解得:KA=15.2,KB=39.8。则有密度KA和KB与之对应,又由题意可知,所求密度小于Km,故为KA。故当密度为KA=15.2辆/km,其速度为:VA=88-1.6KA=88-1.6×15.2=63.68km/h

KA=15.2辆/km,VA=63.68km/h为所求密度最高值与速度最低值。例设车流的速度密度的关系为V=88-1.6K,如限制车流的实际流量不大于最大流量的0.8倍,求速度的最低值和密度的最高值?(假定车流的密度<最佳密度Km)第13页,共50页,2023年,2月20日,星期二第14页,共50页,2023年,2月20日,星期二(1)交通拥挤的类型①周期性的拥挤②非周期性的拥挤(2)瓶颈处的交通流(3)交通密度分析

(4)非周期性拥挤3.连续交通流的拥挤分析第15页,共50页,2023年,2月20日,星期二§4-2交通流的统计分布特性一、交通流统计分布的含义与作用

二、离散型分布

三、连续性分布第16页,共50页,2023年,2月20日,星期二一、交通流统计分布的含义与作用交通流的统计分布特性为设计新的交通设施和确定新的交通管理方案,提供交通流的某些具体特性的预测,并且能利用现有的和假设的数据,作出预报。

描述交通这种随机性的统计规律有两种方法。一种是以概率论中的离散型分布为工具,考察在一段固定长度的时间内到达某场所的交通数量的波动性;另一种是以概率论中的连续型分布为工具,研究上述事件发生的间隔时间的统计特性,如车头时距的概率分布。描述车速和可穿越空档这类交通特性时,也用到连续分布理论。在交通工程学中,离散型分布有时亦称计数分布;连续型分布根据使用场合的不同而有不同的名称,如间隔分布、车头时距分布、速度分布和可穿越空档分布等等。第17页,共50页,2023年,2月20日,星期二二.离散型分布1.泊松分布2.二项分布3.负二项分布4.离散型分布拟合优度检验——χ2检验第18页,共50页,2023年,2月20日,星期二1.泊松分布(1)基本公式式中:P(k)——在计数间隔t内到达k辆车或k个人的概率;λ——单位时间间隔的平均到达率(辆/s或人/s);t——每个计数间隔持续的时间(s)或距离(m);e——自然对数的底,取值为2.71828。若令m=

λt——在计数间隔t内平均到达的车辆数,则m又称为泊松分布的参数。

①到达数小于k辆车(人)的概率:第19页,共50页,2023年,2月20日,星期二②到达数小于等于k的概率:

③到达数大于k的概率:④到达数大于等于k的概率:第20页,共50页,2023年,2月20日,星期二⑤到达数至少是x但不超过y的概率:⑥用泊松分布拟合观测数据时,参数m按下式计算:式中:g——观测数据分组数;fj——计算间隔t内到达kj辆车(人)这一事件发生的次(频)数;kj——计数间隔t内的到达数或各组的中值;N——观测的总计间隔数。第21页,共50页,2023年,2月20日,星期二(2)递推公式(3)应用条件分布的均值M和方差D都等于λt。D2可按下式计算。(4)应用举例例4-1、例4-2、补充:例1、例2第22页,共50页,2023年,2月20日,星期二例4-1设60辆车随机分布在4km长的道路上,求任意400m路段上有4辆及4辆车以上的概率。

解:t=400(m),=60/4000(辆/m)m=t==6(辆)

不足4辆车的概率为:

P(<4)==P(0)+P(1)+P(2)+P(3)=0.0025+0.0149+0.0446+0.0892=0.15124辆车及4辆以上的概率为:

P(≥4)=1-P(<4)=1-0.1512=0.8488第23页,共50页,2023年,2月20日,星期二例4-2第24页,共50页,2023年,2月20日,星期二第25页,共50页,2023年,2月20日,星期二(1)基本公式式中:P(k)——在计数间隔t内到达k辆车或k个人的概率;λ——平均到达率(辆/s或人/s);t——每个计数间隔持续的时间(s)或距离(m);n——正整数;2.二项分布

第26页,共50页,2023年,2月20日,星期二通常记p=λt/n,则二项分布可写成:式中:0<p<1,n、p称为分布参数。

对于二项分布,其均值M=np,方差D=np(1-p),M>D。因此,当用二项分布拟合观测数时,根据参数p、n与方差,均值的关系式,用样本的均值m、方差S2代替M、D,p、n可按下列关系式估算:第27页,共50页,2023年,2月20日,星期二(2)递推公式(3)应用条件

车流比较拥挤、自由行驶机会不多的车流用二项分布拟合较好。(4)应用举例例4-3第28页,共50页,2023年,2月20日,星期二对某一交叉口引道的研究指出:有25%的车辆右转弯,但无左转弯,问三辆车中有一辆车右转弯的概率是多少?

已知:n=3,x=l,P=0.25,q=1-p=0.75。求:P(1)。解:根据题意知,该题符合二项式分布,故有:即三辆车中有一辆车右转弯的概率是42.2%。第29页,共50页,2023年,2月20日,星期二(1)基本公式

式中:p、β为负二项布参数。0<p<1,β为正整数。由概率论可知,对于负二项分布,其均值M=β(1-p)/p,D=β(1-p)/p2,M<D。因此,当用负二项分布拟合观测数据时,利用p、β与均值、方差的关系式,用样本的均值m、方差S2代替M、D,p、β可由下列关系式估算:3.负二项分布第30页,共50页,2023年,2月20日,星期二(2)递推公式

(3)适用条件

当到达的车流波动性很大或以一定的计算间隔观测到达的车辆数(人数)其间隔长度一直延续到高峰期间与非高峰期间两个时段时,所得数据可能具有较大的方差。第31页,共50页,2023年,2月20日,星期二(1)χ2检验的基本原理及方法①建立原假设H0②选择适宜的统计量

③确定统计量的临界值

④判定统计检验结果(2)应用举例

4.离散型分布拟合优度检验——χ2检验第32页,共50页,2023年,2月20日,星期二三.连续型分布

描述事件之间时间间隔的分布称为连续型分布。连续型分布常用来描述车头时距、或穿越空档、速度等交通流特性的分布特征。1.负指数分布(1)基本公式计数间隔t内没有车辆到达(k=0)的概率为:

P(0)=e-λt

上式表明,在具体的时间间隔t内,如无车辆到达,则上次车到达和下次车到达之间,车头时距至少有t秒,换句话说,P(0)也是车头时距等于或大于t秒的概率,于是得:P(h≥t)=e-λt

第33页,共50页,2023年,2月20日,星期二而车头时距小于t的概率则为:

P(h<t)=1-e-λt

若Q表示每小时的交通量,则λ=Q/3600(辆/s),前式可以写成:P(h≥t)=e-Qt/3600式中Qt/3600是到达车辆数的概率分布的平均值。若令M为负指数分布的均值,则应有:

M=3600/Q=1/λ

负指数分布的方差为:

第34页,共50页,2023年,2月20日,星期二用样本的均值m代替M、样本的方差S2代替D,即可算出负指数分布的参数λ。此外,也可用概率密度函数来计算。负指数分布的概率密度函数为:第35页,共50页,2023年,2月20日,星期二(2)适用条件

负指数分布适用于车辆到达是随机的、有充分超车机会的单列车流和密度不大的多列车流的情况。通常认为当每小时每车道的不间断车流量等于或小于500辆,用负指数分布描述车头时距是符合实际的。

2.移位负指数分布(1)基本公式

其概率密度函数为:

式中:为平均车头时距。第36页,共50页,2023年,2月20日,星期二(2)适用条件移位负指数分布适用于描述不能超车的单列车流的车头时距分布和车流量低的车流的车头时距分布。

为了克服移位负指数分布的局限性,可采用更通用的连续型分布,如:

①韦布尔(Weibull)分布;②爱尔朗(Erlang)分布;③皮尔逊Ⅲ型分布;④对数正态分布;⑤复合指数分布。

第37页,共50页,2023年,2月20日,星期二§4-3排队论的应用一、引言二、排队论的基本原理三、M/M/1系统及其应用举例四、简化排队论延误分析方法第38页,共50页,2023年,2月20日,星期二一、引言排队论也称随机服务系统理论,是运筹学的重要内容之一。主要研究“服务”与“需求”关系的一种以概率论为基础的数学理论。第39页,共50页,2023年,2月20日,星期二二.排队论的基本原理排队单指等待服务的顾客(车辆或行人),不包括正在被服务的顾客;排队系统既包括等待服务的顾客,又包括正在被服务的顾客。

排队系统的三个组成部分

(1)输入过程

是指各种类型的顾客按怎样的规律到来。

①定长输入

②泊松输入

③爱尔朗输入

(2)排队规则

指到达的顾客按怎样的次序接受服务。

①损失制

②等待制

③混合制

(3)服务方式

指同一时刻有多少服务台可接纳顾客,为每一顾客服务了多少时间。

①定长分布服务

②负指数分布服务

③爱尔朗分布服务

第40页,共50页,2023年,2月20日,星期二排队系统的主要数量指标最重要的数量指标有三个:(1)等待时间从顾客到达时起至开始接受服务时为止的这段时间。(2)忙期服务台连续繁忙的时期,这关系到服务台的工作强度。(3)队长有排队顾客数与排队系统中顾客数之分,这是排队系统提供的服务水平的一种衡量。

第41页,共50页,2023年,2月20日,星期二三.M/M/1系统及其应用举例

由于M/M/1系统排队等待接受服务的通道只有单独一条,也叫“单通道服务”系统,如图。(1)在系统中没有顾客的概率P(0)=1-ρ(2)在系统中有n个顾客的概率P(n)=ρn(1-ρ)

第42页,共50页,2023年,2月20日,星期二(3)系统中的平均顾客数

(4)系统中顾客数的方差

(5)平均排队长度

(6)非零平均排队长度(7)排队系统中的平均消耗时间(8)排队中的平均等待时间

第43页,共50页,2023年,2月20日,星期二§4-4跟驰理论简介一、引言二、车辆跟驰特性分析三、线性跟驰模型第44页,共50页,2023年,2月20日,星期二二.车辆跟驰特性分析

跟驰理论

是运用动力学方法,研究在无法超车的单一车道上车辆列队行驶时,后车跟随前车的行驶状态的一种理论。非自由状态行驶的车队有如下三个特性:1.制约性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论