版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.1空间几何体的结构巴黎罗浮宫拿破仑广场的透明金字塔
空间几何体结构经典空间几何体结构经典空间几何体结构经典空间几何体的定义:
如果只考虑物体的形状和大小,而不考虑其它因素,那么这些由物体抽象出来的空间图形就叫做空间几何体空间几何体结构经典观察与思考由若干平面多边形围成的几何体叫做多面体空间几何体结构经典2、多面体若干个平面多边形围成的几何体,叫多面体.围成多面体的各个多边形叫多面体的面;相邻两个面的公共边叫多面体的棱;棱和棱的公共点叫多面体的顶点;空间几何体结构经典多面体的定义:(1)定义:由若干个平面多边形围成的空间图形叫做多面体(2)多面体的面:多面体的棱:多面体的顶点:多面体的对角线:围成多面体的各个多边形两个面的公共边棱和棱的公共点不在同一面上的两个顶点的连线段(3)多面体的分类:凸多面体非凸多面体多面体四面体多面体五面体六面体……空间几何体结构经典观察与思考
观察下列物体的形状和大小,试给出相应的空间几何体,说说有它们的共同特征。由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.形成空间几何体结构经典多面体旋转体
由若干个平面多边形围成的几何体.
由一个平面图形绕它所在平面内的一条直线旋转所形成的封闭几何体.顶点面棱BADCB1A1D1C1旋转轴空间几何体结构经典空间几何体的分类:1.多面体:由若干平面多边形围成的几何体2.旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体空间几何体的定义:如果只考虑物体的形状和大小,而不考虑其它因素,那么这些由物体抽象出来的空间图形就叫做空间几何体归纳小结1空间几何体结构经典请仔细观察下列几何体,说说它们的共同特点.1.棱柱的结构特征注意观察几何体的每个面的特点,以及面与面之间的关系空间几何体结构经典DABCEFF’A’E’D’B’C’1、定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
侧棱侧面底面顶点1.棱柱的结构特征相邻侧面的公共边叫做棱柱的侧棱。侧面与底的公共顶点叫做棱柱的顶点。两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。空间几何体结构经典1.棱柱的结构特征DABCEFF’A’E’D’B’C’侧棱侧面底面顶点思考:倾斜后的几何体还是柱体吗?(1)底面互相平行。(2)侧面是平行四边形。(3)侧棱平行且相等.空间几何体结构经典棱柱的表示:用平行的两底面多边形的字母表示棱柱,如:棱柱ABCDE-A1B1C1D1E1。DABCEFF’A’E’D’B’C’空间几何体结构经典棱柱的分类
棱柱的底面可以是三角形、四边形、五边形……我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱……1.侧棱不垂直于底的棱柱叫做斜棱柱。2.侧棱垂直于底的棱柱叫做直棱柱。3.底面是正多边形的直棱柱叫做正棱柱。空间几何体结构经典①过BC的截面截去长方体的一角,截去的几何体是不是棱柱,余下的几何体是不是棱柱?理解棱柱的定义问题1
答:都是棱柱.空间几何体结构经典理解棱柱的定义问题
②观察右边的棱柱,共有多少对平行平面?能作为棱柱的底面的有几对?
答:四对平行平面;只有一对可以作为棱柱的底面.空间几何体结构经典理解棱柱的定义
③为什么定义中要说“其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,”而不简单的只说“其余各面是平行四边形呢”?
答:满足“有两个面互相平行,其余各面都是平行四边形的几何体”这样说法的还有右图情况,如图所示.所以定义中不能简单描述成“其余各面都是平行四边形”.问题空间几何体结构经典课堂练习:1.下面的几何体中,哪些是棱柱?空间几何体结构经典请仔细观察下列几何体,说说它们的共同特点.2.棱锥的结构特征空间几何体结构经典棱锥的结构特征空间几何体结构经典SABCD顶点侧面侧棱底面
有一个面是多边形,其余各面都是有一个公共顶点的三角形所围成的几何体叫棱锥.棱锥的结构特征棱锥
如何描述下图的几何结构特征?空间几何体结构经典棱锥的底面棱锥的侧面棱锥的顶点棱锥的侧棱SABCDE空间几何体结构经典棱锥的分类:按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥、……ABCDS棱锥的表示方法:用表示顶点和底面的字母表示,如四棱锥S-ABCD。空间几何体结构经典正棱锥
如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥是正棱锥.OSABCDE正棱锥的基本性质
各侧棱相等,各侧面是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。空间几何体结构经典用一个平行于棱锥底面的平面去截棱锥,得到怎样的两个几何体?想一想:3.棱台的结构特征空间几何体结构经典BCADSB1A1C1D1DBCAC1
B1A1D1侧棱侧面下底面顶点上底面空间几何体结构经典1、棱台的概念:用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台。DBCAC1
B1A1D1上底面下底面侧面侧棱顶点空间几何体结构经典2.棱台的分类:由三棱锥、四棱锥、五棱锥……截得的棱台分别叫做三棱台、四棱台、五棱台……3.棱台的表示:
用各底面各顶点的字母表示空间几何体结构经典练习:下列几何体是不是棱台,为什么?(1)(2)空间几何体结构经典
以矩形的一边所在直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱。4.圆柱的结构特征(1)圆柱的形成(2)圆柱的结构特征空间几何体结构经典B’AA’OBO’
以矩形的一边所在直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱。4.圆柱的结构特征空间几何体结构经典4、圆柱的结构特征矩形O1O
1、定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱。
(1)旋转轴叫做圆柱的轴。
(2)垂直于轴的边旋转而成的曲面叫做圆柱的底面。
(3)平行于轴的旋转而成的曲面叫做圆柱的侧面。
(4)无论旋转到什么位置不垂直于轴的边都叫做圆柱的母线。空间几何体结构经典AA’母线B’OBO’轴底面侧面圆柱的表示方法:用表示它的轴的字母表示,如:“圆柱OO'”4.圆柱的结构特征空间几何体结构经典(1)圆锥的形成2.圆锥的结构特征顶点SABO底面轴侧面母线
以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥。5.圆锥的结构特征空间几何体结构经典圆锥的结构特征直角三角形SAO定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥。
(1)旋转轴叫做圆锥的轴。
(2)垂直于轴的边旋转而成的曲面叫做圆锥的底面。
(3)不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。
(4)无论旋转到什么位置不垂直于轴的边都叫做圆锥的母线。空间几何体结构经典S顶点ABO底面轴侧面母线定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥。圆锥的表示方法:用表示它的轴的字母表示,如:“圆锥SO”5.圆锥的结构特征空间几何体结构经典OO’1.定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台.想一想:圆台能否用旋转的方法得到?若能,请指出用什么图形?怎样旋转?6.圆台的结构特征空间几何体结构经典O'O底面底面轴侧面母线2、圆台的表示:用表示它的轴的字母表示,如圆台OO′3、圆台与棱台统称为台体。空间几何体结构经典7、球的结构特征O球心半径AB1、球的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球。(1)半圆的半径叫做球的半径。(2)半圆的圆心叫做球心。(3)半圆的直径叫做球的直径。2、球的表示:用表示球心的字母表示,如球O空间几何体结构经典
球的结构特征
以半圆的直径所在的直线为旋转轴,将半圆旋转所形成的曲面叫作球面,球面所围成的几何体叫作球体,简称球。球心半径直径O空间几何体结构经典想一想:用一个平面去截一个球,截面是什么?O
用一个截面去截一个球,截面是圆面。球面被经过球心的平面截得的圆叫做大圆。球面被不过球心的截面截得的圆叫球的小圆。空间几何体结构经典球、圆柱、圆锥、圆台过轴的截面分别是什么图形?想一想:空间几何体结构经典几何体的分类柱体锥体台体球多面体旋转体空间几何体结构经典小结:空间几何体多面体旋转体
棱柱
棱台
棱锥
圆柱
圆台
圆锥
球体空间几何体结构经典棱柱棱锥棱锥圆锥圆台棱台球归纳小结2锥体台体多面体球体柱体旋转体空间几何体结构经典
日常生活中我们常用到的日用品,比如:消毒液、暖瓶、洗洁精等的主要几何结构特征是什么?简单组合体圆柱圆台圆柱
由柱、锥、台、球这些简单几何体组成(拼接或截去)的几何体叫做简单组合体.空间几何体结构经典
走在街上会看到一些物体,它们的主要几何结构特征是什么?简单组合体空间几何体结构经典
一些螺母、带盖螺母又是有什么主要的几何结构特征呢?简单组合体空间几何体结构经典
蒙古大草原上遍布蒙古包
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度LED路灯安装与维护一体化服务合同3篇
- 2024旅行社与老字号餐馆餐饮服务合同3篇
- 2025版办公室租赁与全效装修及后期维护服务合同3篇
- 2024年高端服装品牌授权经营合同
- 二零二五年度历史文化遗址修复个人承包装修合同2篇
- 2024版医药销售代理合同
- 化学课堂交流研讨会主持词范文
- 2024版生产车间员工劳动合同书
- 二零二五年度二手车维修保养技师培训服务合同2篇
- 2024年电子竞技赛事组织与推广协议3篇
- 东南大学医学三基考试外科选择题及答案
- TZJASE 005-2021 非道路移动柴油机械(叉车)排气烟度 检验规则及方法
- GB/T 31989-2015高压电力用户用电安全
- CB/T 749-1997固定钢质百叶窗
- 大佛顶首楞严经浅释
- 品牌(商标)授权书(中英文模板)
- 行动销售(最新版)课件
- 船舶轴系与轴系布置设计课件
- 学校学生评教表
- 晚宴活动拉斯维加斯之夜策划方案
- 配电室巡检表
评论
0/150
提交评论