氨基羟基的保护与脱保护_第1页
氨基羟基的保护与脱保护_第2页
氨基羟基的保护与脱保护_第3页
氨基羟基的保护与脱保护_第4页
氨基羟基的保护与脱保护_第5页
已阅读5页,还剩90页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

氨基羟基的保护与脱保护第1页/共95页1.常见的烷氧羰基类氨基保护基

苄氧羰基(Cbz)、叔丁氧羰基(Boc)、笏甲氧羰基(Fmoc)、烯丙氧羰基(Alloc)、

三甲基硅乙氧羰基(Teoc)、甲(或乙)氧羰基

2.常见的酰基类氨基保护基邻苯二甲酰基(Pht)、对甲苯磺酰基(Tos)、三氟乙酰基(Tfa)邻(对)硝基苯磺酰基(Ns)、特戊酰基、苯甲酰基3.常见的烷基类氨基保护基

三苯甲基(Trt)、2,4-二甲氧基苄基(Dmb)对甲氧基苄基(PMB)、苄基(Bn)常见氨基保护基第2页/共95页氨基保护基的选择策略最好的是不保护.若需要保护,选择最容易上和脱的保护基,当几个保护基需要同时被除去时,用相同的保护基来保护不同的官能团是非常有效。要选择性去除保护基时,就只能采用不同种类的保护基。要对所有的反应官能团作出评估,确定哪些在所设定的反应条件下是不稳定并需要加以保护的,选择能和反应条件相匹配的氨基保护基。还要从电子和立体的因素去考虑对保护的生成和去除速率的选择性如果难以找到合适的保护基,要么适当调整反应路线使官能团不再需要保护或使原来在反应中会起反应的保护基成为稳定的;要么重新设计路线,看是否有可能应用前体官能团(如硝基等);或者设计出新的不需要保护基的合成路线。选择一个氨基保护基时,必须仔细考虑到所有的反应物,反应条件及所设计的反应过程中会涉及的底物中的官能团。第3页/共95页第一部分:

烷氧羰基类氨基保护基第4页/共95页1.1苄氧羰基的引入用Cbz-Cl与游离氨基在用NaOH或NaHCO3

控制的碱性条件下可以很容易同Cbz-Cl反应得到N-苄氧羰基氨基化合物。氨基酸酯同Cbz-Cl的反应则是在有机溶剂中进行,并用碳酸氢盐或三乙胺来中和反应所产生的HCl。此外,Cbz-ONB(4-O2NC6H4OCOOBn)等苄氧羰基活化酯也可用来作为苄氧羰基的导入试剂,该试剂使伯胺比仲胺易被保护;苯胺由于亲核性不足,与该试剂不反应第5页/共95页1.1.1苄氧羰基的引入示例第6页/共95页1.1.2苄氧羰基的脱去1).催化氢解2).酸解裂解(HBr,TMSI)3).Na/NH3(液)还原实验室常用简洁的方法是催化氢解(用H2或其它供氢体,一般常温常压氢化即可);当分子中存在对催化氢解敏感(有苄醚,氯溴碘等)或钝化催化剂的基团(硫醚等)时,我们就需要采用化学方法如酸解裂解HBr或Na/NH3(液)还原等。苄氧羰基的脱去主要有以下几种方法第7页/共95页1.1.2苄氧羰基的酸性脱除注意点苄氧羰基的用强酸或Lewis酸脱除时,会产生苄基的碳正离子,若分子中有捕捉碳正离子的基团时,将得到相应的副产物.第8页/共95页1.1.3苄氧羰基的脱去示例(一)第9页/共95页1.1.4苄氧羰基的脱去示例(二)第10页/共95页1.2叔丁氧羰基除Cbz保护基外,叔丁氧羰基(Boc)也是目前多肽合成中广为采用的氨基保护基,特别是在固相合成中,氨基的保护多用Boc而不用Cbz。Boc具有以下的优点:Boc-氨基酸除个别外都能得到结晶;易于酸解除去,但又具有一定的稳定性;Boc-氨基酸能较长期的保存而不分解;酸解时产生的是叔丁基阳离子再分解为异丁烯,它一般不会带来副反应;对碱水解、肼解和许多亲核试剂稳定;Boc对催化氢解稳定,但比Cbz对酸要敏感得多。当Boc和Cbz同时存在时,可以用催化氢解脱去Cbz,Boc保持不变,或用酸解脱去Boc而Cbz不受影响,因而两者能很好地搭配使用。第11页/共95页1.2.1叔丁氧羰基的引入游离氨基在用NaOH或NaHCO3

控制的碱性条件下用二氧六环和水的混合溶剂中很容易与Boc2O反应得到Boc保护的胺。这是引入Boc常用方法之一,它的优点是副产物无干扰,并容易除去。有时对一些亲核性较大的胺,一般可在甲醇中和Boc酸酐直接反应即可,无须其他的碱,其处理也方便(见内部期刊第一期)。对水较为敏感的氨基衍生物,采用Boc2O/TEA/MeOHorDMF在40-50℃下进行较好。有空间位阻的氨基酸而言,用Boc2O/Me4NOH.5H2O/CH3CN是十分有利的。

叔丁氧羰基的引入一般方法:第12页/共95页1.2.2叔丁氧羰基的引入示例(一)第13页/共95页1.2.3叔丁氧羰基的脱去Boc比Cbz对酸敏感,酸解产物为异丁烯和CO2(见下式)。在液相肽的合成中,Boc的脱除一般可用TFA或50%TFA(TFA:CH2Cl2=1:1,v/v)。在固相肽合成中,由于TFA会带来一些副反应(如产生的胺基上酰化成为相应的三氟乙酰胺等),因此多采用1-2MHCl/有机溶剂。一般而言,用HCl/二氧六环比较多见。叔丁氧羰基的脱去:第14页/共95页1.2.3叔丁氧羰基的脱去一般选用酸性脱除:

用甲醇作溶剂,HCl/EtOAc的组合使TBDMS和TBDPS酯以及叔丁酯和非酚类酯在Boc脱除时不被断裂。当同时脱除分子中有叔丁酯基(可根据不同的酸性选择性脱Boc)或分子中有游离羧酸基,千万记住不能用HCl/MeOH,其可将羧酸变为甲酯。在Boc脱去过程中TBDPS和TBDMS基相对是稳定的(在TBS存在,用稀一些的10-20%TFA)在中性的无水条件下Me3SiI在CHCl3或CH3CN中除了能脱除Boc外,也能断裂氨基甲酸酯、酯、醚和缩酮。通过控制条件可以得到一定的选择性。第15页/共95页当分子中存在一些官能团其可与副产物叔丁基碳正离子在酸性下反应时,需要添加硫酚(如苯硫酚)来清除叔丁基碳正离子,此举可防止硫醇(醚,酚)(如蛋氨酸,色氨酸等)和其他富电子芳环(吲哚,噻吩,吡唑,呋喃多酚羟基取代苯等等)脱Boc时的烷基化。也可使用其它的清除剂,如苯甲醚、苯硫基甲醚、甲苯硫酚、甲苯酚及二甲硫醚。中性条件TBSOTf/2.6-lutidine的组合或ZnBr2/CH2Cl2也可对BOC很好的脱除。如果底物对叔丁基碳正离子特别敏感,也可以ZnBr2/CH2Cl2体系中加碳正离子清除剂伯胺衍生物存在下,ZnBr2/CH2Cl2可以选择性的脱除仲胺上的Boc?1.2.3叔丁氧羰基的脱去第16页/共95页1.2.4叔丁氧羰基的脱去示例第17页/共95页1.2.4叔丁氧羰基的脱去示例第18页/共95页1.2.5叔丁氧羰基的脱去第19页/共95页1.3.笏甲氧羰基(Fmoc)Fmoc保护基的一个主要的优点是它对酸极其稳定,在它的存在下,Boc和苄基可去保护。Fmoc的其他优点是它较易由简单的胺不通过水解来去保护,被保护的胺以游离碱释出。一般而言Fmoc对氢化稳定,但某些情况下,它可用H2/Pd-C在AcOH和MeOH仲脱去。Fmoc保护基可与酸脱去的保护基搭配而用于液相和固相的肽合成。

笏甲氧羰基的特点:第20页/共95页1.3.1笏甲氧羰基的引入用笏甲醇在无水CH2Cl2中与过量的COCl2反应可以得到很好产率的Fmoc-Cl(熔点61。5-63℃),所得Fmoc-Cl在二氧六环/Na2CO3或NaHCO3溶液同氨基酸反应则可得到Fmoc保护的氨基酸(一般不能用强碱)。用Fmoc-OSu(Su=丁二酰亚胺基)在乙腈/水中导入,该方法在制备氨基酸衍生物时很少低聚肽生成。目前我们一般更倾向于用Fmoc-OSu上FMoc.笏甲氧羰基的引入一般方法:第21页/共95页1.3.2笏甲氧羰基的引入示例第22页/共95页1.3.3笏甲氧羰基的脱去Fmoc同前面提到的Cbz和Boc不同,它对酸稳定,较易通过简单的胺(而不是水解)脱保护,被保护的胺以游离碱释出。Fmoc-ValOH在DMF中用不同的胺碱去保护的快慢有较大的差异,20%的哌啶较快。Fmoc保护基一般也能用浓氨水、二氧六环/4MNaOH(30:9:1)以及用哌啶、乙醇胺、环己胺、吗啡啉、吡咯烷酮、DBU等胺类的50%CH2Cl2的溶液脱去。另外,Bu4N+F-/DMF在室温的脱去效果也很好。叔胺(如三乙胺)的脱去效果较差,具有空间位阻的胺其脱除效果最差。一般我们在常规合成(液相反应)不经常性使用该保护基的原因:1.对碱过于敏感;2.反应的副产物。第23页/共95页1.3.4笏甲氧羰基的脱去示例第24页/共95页1.4.烯丙氧羰基(Alloc)同前面提到的Cbz、Boc和Fmoc不同,它对酸、碱等都很稳定,在它的存在下,Cbz、Boc和Fmoc等可选择性去保护,而它的脱去则通常在Pd(0)的存在下进行Alloc-Cl在有机溶剂/Na2CO3、NaHCO3溶液或吡啶中同氨基化合物反应则可得到Alloc保护的氨基衍生物。

烯丙氧羰基的特点:烯丙氧羰基的引入:第25页/共95页1.4.1烯丙氧羰基的引入示例第26页/共95页1.4.2烯丙氧羰基的脱去Alloc保护基对酸、碱等都有较强的稳定性,它们通常只用Pd(0),如Pd(PPh3)4或Pd(PPh3)2Cl2存在的条件去保护。在异戊烯酯或肉桂酸酯存在下,可用Pd(OAc)2/TPPT/CH3CN/Et3N/H2O去保护,但随时间的增加,这些酯也会反应,并且氨基甲酸异戊烯酯和烯丙基碳酸酯同样被断裂。当加入Boc2O、AcCl、TsCl、或丁二酸酐时,Pd(PPh3)2Cl2/Bu3SnH可将Alloc基转变为其它的胺衍生物。另外,Alloc也可在Pd(PPh3)4和HCOOH/TEA或AcOH/NMO催化脱去。

第27页/共95页1.4.3烯丙氧羰基的脱去示例第28页/共95页1.5三甲基硅乙氧羰基(Teoc)三甲基硅乙氧羰基(Teoc)同前面提到的Cbz、Boc,Fmoc和Alloc不同,它对酸、大部分碱,及贵金属催化等都很稳定,在它的存在下,Cbz、Boc,Fmoc和Alloc等可选择性去保护,而它的脱去则通常在氟负离子进行。如TBAF、TEAF和HF等。一般情况下,Teoc-Cl、Teoc-OSu或Teoc-OBt在有机溶剂,碱的存在下同氨基化合物反应则可得到Teoc保护的氨基衍生物三甲基硅乙氧羰基的引入:第29页/共95页1.5.1三甲基硅乙氧羰基的引入示例第30页/共95页1.5.2三甲基硅乙氧羰基的脱去一般三甲基硅乙氧羰基(Teoc)脱除主要通过TBAF(四丁基氟化胺),TEAF(四乙基氟化胺)或TMAF(四甲基氟化胺)来脱除,在脱除过程中,TBAF将产生四丁基胺盐的副产物,常常不易除去,而且它的质谱丰度高,往往影响产品的交货,此时可用TMAF或TEAF来代替。

第31页/共95页1.6.甲(或乙)氧羰基的引入甲(或乙)氧羰基同前面提到的各种烷氧羰基不同,它对一般的酸、碱和氢解等都很稳定,在它的存在下,Cbz、Boc和苄基等可选择性去保护。同Cbz、Fmoc和Alloc的引入方法类似,用甲(或乙)氧羰酰氯在有机溶剂/Na2CO3、NaHCO3或有机碱同氨基化合物反应则可得到甲(或乙)氧羰基保护的氨基衍生物。甲(或乙)氧羰基的引入一般方法:第32页/共95页1.6.1甲(或乙)氧羰基的引入示例第33页/共95页1.6.2甲(或乙)氧羰基的脱去因为甲(或乙)氧羰基较强的稳定性,它们通常只用较剧烈的条件去保护,如HBr/HOAc处理、KOH/MeOH、6NHCl和TMSI等。

第34页/共95页第二部分:

酰基类氨基保护基第35页/共95页2.1.邻苯二甲酰基同一般的酰基氨基酸比较,Pht-氨基酸在接肽时不易消旋,但它对碱不稳定,在碱皂化的条件下发生邻苯二甲酰亚胺环的开环生成邻羧基苯甲酰基衍生物。因此,当选用Pht作氨基保护基时,肽链的羧基末端则不能用甲酯(或乙酯)保护,而只能用苄酯或叔丁酯保护,以避免将来用皂化去酯的步骤。Pht对催化氢解、HBr/HOAc处理以及Na/NH3(液)还原(后处理的碱性条件需要避免)等均稳定,但很容易用肼处理脱去。另外其特性只用于伯胺保护邻苯二甲酰基的特点:第36页/共95页2.1.1邻苯二甲酰基的引入最先导入Pht基的方法是将邻苯二甲酸酐同氨基酸在145-150℃进行熔融反应,但会引起一些氨基酸部分消旋作用,因而后来又进行了一些改进,如邻苯二甲酸酐/CHCl3/70℃下反应。而最温和的方法(见下式)是N-乙氧羰基邻苯二甲酰亚胺与氨基酸在Na2CO3水溶液中于25℃反应10-15分钟,就可以得到85-95%的Pht-氨基衍生物,并且可在仲胺的存在时选择性地保护伯胺。邻苯二甲酰基的引入:第37页/共95页2.1.2邻苯二甲酰基的引入示例第38页/共95页2.1.3邻苯二甲酰基的脱去Pht-氨基衍生物很容易用肼处理脱去。一般用水合肼的醇溶液回流2小时或用肼的水或醇溶液室温放置1-2天都可完全脱去Pht保护基。在此条件下Cbz、Boc、甲酰基、Trt、Tos等均可不受影响。在肼效果差的情况下,用NaBH4/i-PrOH-H2O(6:1)和AcOH在80℃反应5-8小时是很有效的(见下式)。另外,浓HCl回流也容易脱去Pht保护基。邻苯二甲酰基的脱去:第39页/共95页2.1.4邻苯二甲酰基的脱去示例第40页/共95页2.2.对甲苯磺酰基对甲苯磺酰胺一般可由胺和对甲苯磺酰氯在吡啶或水溶性碱存在下制得,它是最稳定的氨基保护基之一,对碱性水解和催化还原稳定。碱性较弱的胺如吡咯和吲哚形成的对甲苯磺酰胺比碱性更强的烷基胺所形成的对甲苯磺酰胺更易去保护,可以通过碱性水解去保护,而后者通过碱性水解去保护是不可能的。同时Tos的酰胺或氨基甲酸酯更容易形成结晶。Tos-氨基酸的酰氯在NaOH等强碱作用下也很不稳定对甲苯磺酰基的特点:第41页/共95页2.2.1对甲苯磺酰基的引入对甲苯磺酰氯在NaOH、NaHCO3或其他有机碱存在下同氨基酸、吡咯和吲哚等反应很容易得到良好产率的Tos-衍生物第42页/共95页2.2.2对甲苯磺酰基的脱去Tos基非常稳定,它经得起一般酸解(TFA和HCl等)、皂化、催化氢解等多种条件得处理比受影响,常用萘钠、Na/NH3(液)和Li/NH3(液)处理脱去。HBr/苯酚和Mg/MeOH也是比较好的去保护方法。值得注意的是,Na/NH3(液)的操作比较麻烦,并且会引起一些肽键的断裂和肽链的破坏。另外,有时HF/MeCN回流也能脱去Tos基。

第43页/共95页2.2.3邻(对)硝基磺酰基(Ns)的引入邻(对)甲苯磺酰基(Ns)作为氨基的保护基也很常见,其主要优点是易于引入,并且脱除条件温和。2-或4-硝基苯磺酰氯反应很容易实现(Et3N,CH2Cl2,23℃),生成的磺酰胺在强酸(HCl10eq,MeOH,60℃,4h)或强碱(NaOH10eq,MeOH,60℃,4h)环境中都相当稳定。

第44页/共95页2.2.4邻(对)甲苯磺酰基(Ns)的脱除Ns的脱去也相当温和,可以用(PhSH,K2CO3,DMF,23℃)或(HSCH2COOH,LiOH,DMF,23℃),进而生成胺基化合物。其中第二种条件更利于操作,因为生成的副产物(O2NC6H4SCH2COOH)在碱性条件下可以用水洗除去。

第45页/共95页2.3.三氟乙酰基三氟乙酰基(Tfa)可用三氟醋酐导入,在稀碱液中很容易脱去。由于N-Tfa-氨基酸在接肽时易于消旋,也是采用此保护基时应该注意的地方。第46页/共95页2.3.1三氟乙酰基的引入由于三氟醋酐同氨基酸反应时易生成恶唑烷酮而发生消旋,因此,同甲酰基的引入一样,在低温下于三氟醋酸溶液中用三氟醋酐酰化为好。一般而言,CF3COOEt/Et3N/MeOH是较好的方法,可在仲胺存在下,选择性地保护伯胺。在TFAA/18-Crown-6/Et3N中,伯胺与18-Crown-6形成络合物,可选择性地酰化仲胺。而在仲胺存在下,CF3COO-邻苯二甲酰亚胺也可选择性地将TFA基团引入到伯胺。第47页/共95页2.3.2三氟乙酰基的脱去三氟乙酰胺也是较易去保护地酰胺之一。Tfa基可以在水或乙醇水溶液中用0.1-0.2NNaOH处理或者用1M哌啶溶液处理很容易地脱去。在K2CO3或Na2CO3/MeOH/H2O条件下,Tfa可在甲基酯存在下于室温去保护。也可在NH3/MeOH,HCl/MeOH或通过相转移水解(KOH/Et3Bn+Br-/H2O/CH2Cl2或乙醚)脱去。第48页/共95页2.4其他用于氨基保护的酰胺特戊酰胺:无a-质子,用于芳环的另外负离子化。苯甲酰胺:苯甲酰基,可用于分子设计的官能团转化脱除方法第49页/共95页第三部分:烷基类氨基保护基

1.三苯甲基(Trt),2.2,4-二甲氧基苄基(Dmb),

3.对甲氧基苄基(PMB),

4.苄基(Bn)都是常见的烷基类氨基保护基它们与酰基类和烷氧羰基类氨基保护基同等重要。第50页/共95页3.1.三苯甲基三苯甲基(Trt)是50年代开始用于多肽合成的,也被用于保护各种氨基,如氨基酸、青霉素、头孢霉素等。N-Trt-α-氨基酸的酯不能发生水解,需要较强的去保护条件,α-质子同样不易被脱去,这意味着,在分子中其他地方的酯可以选择性的水解。在接肽反应中,Trt-氨基酸(除Trt-Gly和Trt-Ala以外)一般不能采用混合酸酐法接肽,Trt-氨基酸的酯不能水解,也就不能用叠氮法接肽,而只能采用DCC这类方法来接肽。但Trt的立体位阻只表现在对Trt-氨基酸的反应影响上,因此对长链肽的末端氨基的保护来说,Trt还是可用的,特别是对于带有含硫氨基酸的肽,由于不能采用催化氢解来实现Cbz和Boc之间的选择性脱去,采用Trt则将较好的选择。第51页/共95页3.1.1三苯甲基的引入因Trt立体位阻很大,一般Trt-氨基酸酯难以皂化(除甘氨酸酯外),强烈条件(如高温)易引起消旋。Trt引入常用(吡咯、吡唑和咪唑等可用类似反应):先制得Trt-氨基酸苄酯,再控制吸氢量选择性氢解,但有部分Trt被氢化,需除去伴生自由氨基酸。用过量Trt-Cl,生成Trt-氨基酸三苯甲酯,然后用HCl/HOAc处理脱去三苯甲酯而得到Trt-氨基酸。是用肽的酯同Trt-Cl反应得到Trt-肽酯,后者容易皂化而不存在Trt的立体位阻作用。用Trt-Cl/Me3SiCl/Et3N和Trt-Cl/TMSCl/Et3N也容易得到Trt-氨基酸。第52页/共95页3.1.2三苯甲基的引入示例第53页/共95页3.1.3三苯甲基的脱去Trt容易用酸脱去,如用HOAc或50%(或75%)HOAc的水溶液在30℃或回流数分钟顺利除去。这时N-Boc和O-But可以稳定不动。其他如HCl/MeOH、HCl/CHCl3、HBr/HOAc和TFA都能很方便的脱去Trt。Trt对酸的敏感程度还随所用的酸的不同而异,例如Trt对醋酸比较敏感,在80%的醋酸中,Trt的脱除速度大约比Boc快21,000倍,因而可以在Boc存在下选择性地脱去Trt,如用0.1MHBr/HOAc为试剂,Trt脱去速度反而慢于Boc。第54页/共95页3.1.4三苯甲基的脱去Trt也能被催化氢解脱去,但脱去速度比O-苄基和N-Cbz要慢得多。根据所用试剂和脱去方法得不同,Trt被分解所形成的产物也不同(见下式)。第55页/共95页3.1.5三苯甲基的脱去示例第56页/共95页3.1.6三苯甲基的脱去示例第57页/共95页3.22,4-二甲氧基苄基(DMB)2,4-二甲氧基苄基(DMB)是较稳定的氨基保护基之一,对催化氢解较Cbz、PMB和Bn稳定,故用H2/8%Pd-C/EtOH处理,则可除去Bn,而保留N-DMB。注意不要用3,4-二甲氧基苄基、3,5-二甲氧基苄基代替2,4-二甲氧基苄基同样,用Pd(PPh3)4/HOAc/THF处理,则可保留N-DMB,而除去Alloc。酰胺的苄基,常规加氢方法不易脱除,但DMB和PMB容易脱除。在设计合成路线时,2,4-二甲氧基苄胺常被用为氨的等价物加以使用。第58页/共95页3.2.12,4-二甲氧基苄基的引入2,4-二甲氧基苄基(DMB)一般由ArCHO/NaBH3CN或NaBH(OAc)3还原胺化类引入。或2,4-二甲氧基苄胺作为氨基的等价体引入。第59页/共95页3.2.22,4-二甲氧基苄基的脱去DMB容易用酸脱去,如用TFA,TosOH或HCl的有机溶液在0℃或室温即可顺利除去。采用TFA/i-Pr3SiH/CH2Cl2时,N-Fmoc可以稳定不动。其他如DDQ/CH2Cl2也能很方便的脱去DMB,而叔丁酯和N-Boc可以不受影响。第60页/共95页3.3对甲氧基苄基对甲氧基苄基(PMB)是也最稳定的氨基保护基之一。它对大多数反应都是稳定的,在Bn存在下,可用CAN或DDQ氧化选择脱PMB;同样,在Boc和叔丁酯存在下,可用CAN氧化选择脱PMB;也可用H2/Pd(OH)2去掉Bn,而保留PMB。PMB一般采用MeOC6H4CH2Br或MeOC6H4CH2Cl和碱(K2CO3、i-Pr2NEt、NaH和DBU等)在有机溶剂(如DMF、二氯甲烷和乙腈等)中反应来引入,或MeOC6H4CHO/NaBH3CN或NaBH(OAc)3还原胺化等。第61页/共95页3.3.1对甲氧基苄基的引入示例第62页/共95页3.3.2对甲氧基苄基的脱去对甲氧基苄基(PMB)的脱去较多,除了常规的催化氢解外,CAN、DDQ或SmI2氧化去保护和在TFA中加热脱去也经常应用。第63页/共95页3.3.3对甲氧基苄基的脱去示例第64页/共95页3.4.苄基苄基(Bn)是也最稳定的氨基保护基之一,同PMB一样,对大多数反应都是稳定的,但比PMB更加稳定,因而也更难脱除。酰胺的苄基,常规加氢方法不易脱除,可以通过Na/NH3脱除。一般和PMB一样也采用C6H4CH2Br或C6H4CH2Cl和K2CO3、DIPEA、NaH、Et3N和n-BuLi在有机溶剂(如DMF、二氯甲烷和乙腈等)中反应来引入,或C6H4CHO/NaBH4、NaBH3CN或NaBH(OAc)3还原胺化。第65页/共95页3.4.1苄基的引入示例第66页/共95页3.4.2苄基的脱去Bn常用催化氢解脱去,如H2,20%Pd(OH)2/C、H2/Pd-C、H2/PdCl2、Pd/HCOOH或Pd-C/HCOOH、Pd-C/HCOONH4、Pd-C/NH2NH2或Pd-C/环已烯作氢源转移氢化.在用催化氢化(H2,Pd/C)脱苄时,由于胺对钯催化剂的慢性毒化使得反应较慢通常较慢,甚至反应不彻底.一般加酸或Boc2O促进Bn的离去。当分子中存在氢化敏感官能团时,我们需要用化学方法进行脱苄基。一般常用的方法是CH3CHClOCOCl、溴腈和CCl3CH2COCl/CH3CN。也可以Li/MH3、Na/NH3、CAN。酰氨上的苄基一般较难用氢解脱除,此时可以用AlCl3进行脱除。第67页/共95页3.4.3苄基的脱去示例催化氢解选择性:Cbz,-OBn>R2NBn

PMB,Bn可以由反应条件控制第68页/共95页3.4.4苄基的脱去示例第69页/共95页羟基的保护与去保护第70页/共95页羟基的保护(前言)羟基广泛存在于许多在生理上和合成上有意义的化合物中,如核苷,碳水化合物、甾族化合物、大环内酯类化合物、聚醚、某些氨基酸的侧链。另外,羟基也是有机合成中一个很重要的官能基,其可转变为卤素、氨基、羰基、酸基等多种官能团。在化合物的氧化、酰基化、用卤代磷或卤化氢的卤化、脱水的反应或许多官能团的转化过程中,我们常常需要将羟基保护起来。在含有多官能团复杂分子的合成中,如何选择性保护羟基和脱保护往往是许多新化合物开发时的关键所在,如紫杉醇的全合成。羟基保护主要将其转变为相应的醚或酯,以醚更为常见。一般用于羟基的保护醚主要有硅醚、甲基醚、烯丙基醚、苄基醚、烷氧甲基醚、烷巯基甲基醚、三甲基硅乙基甲基醚等等。羟基的酯保护一般用的不多,但在糖及核糖化学中较为多见。

第71页/共95页应用最广泛的几种保护基硅醚保护基

苄醚保护基烷氧基甲基醚或烷氧基取代甲基醚

其他保护基

三甲基硅醚(TMS-OR)叔丁基二甲基硅醚(TBDMS-ORorTBS-OR)

叔丁基二苯基硅醚(TBDPS-OR)

第72页/共95页硅醚保护的优点硅醚是最常见的保护羟基的方法之一。主要优点有:

易保护,也容易去保护随着硅原子上的取代基的不同,保护和去保护的反应活性均有较大的变化。当分子中有多官能团时,空间效应及电子效应是影响反应的主要因素。

在游离伯胺或仲胺基的存在下,能够对羟基进行保护任何羟基硅醚都可以通过四烷基氟化胺如TBAF脱除,其主要原因是硅原子对氟原子的亲和性远远大于硅-氧之间的亲和性。

硅-氮键的结合远比硅-氧键来的弱,硅原子优先与羟基上的氧原子结合,这正是与其他保护基的不同之处。

第73页/共95页硅醚保护的稳定性硅醚对酸和碱都敏感;但是不同的硅醚对酸,碱有相对的稳定性。空间效应及电子效应是主要的影响因素。在酸中的稳定性为:TMS(1)<TES(64)<TBDMS(20,000)<TIPS(700,000)<TBDPS(5,000,000);

在碱中稳定性为:TMS(1)<TES(10-100)<TBDMS~TBDPS(20,000)<TIPS(100,000)

一般而言,对于没有什么位阻的伯醇和仲醇,尽量不要选用TMS作为保护基团,因为得到的产物一般在硅胶这样弱的酸性条件下也会被裂解掉。第74页/共95页硅醚去保护硅醚可以用酸或碱或四烷基氟化胺脱去

在用TBAF裂解硅醚后,分解产生的四丁铵离子有时通过柱层析或HPLC很难除干净,而季铵盐的质谱丰度(Bu4N+:242)又特别的强有时会干扰质谱,因此这时需要使用四甲基氟化铵或四乙基氟化铵来脱除。

一般情况下,在TBDMS基团存在时,断裂DEIPS(二乙基异丙基硅基)基团是较容易的,但实际得出的一些结果是相反的。在这些例子中,分子结构中空间阻碍是产生相反选择性的原因。电子效应的不同也会影响反应的选择性。对于两种空间结构相似的醇来说,电子云密度不同造成酸催化去保护速率不同,因此可以选择性去保护。这一点对酚基和烷基硅醚特别有效:烷基硅醚在酸中容易去保护,而酚基醚在碱性条件下更容易去保护。降低硅的碱性还可以用于改变Lewis酸催化反应的结果,并且有助于选择性去保护。在硅原子上引入吸电子取代基可以提高碱性条下水解反应的灵敏性,而对酸的敏感性降低。

第75页/共95页三甲基硅醚(TMSOR)许多硅基化试剂(如TMSCl,TMSOTf)均可用于在各种醇中引入三甲基硅基。一般来说,空间位阻较小的醇最容易硅基化,但同时在酸或碱中也非常不稳定易水解,三甲基硅基化广泛用于多官能团化合物,生成的衍生物具有较高的挥发度而利于其相色谱和质谱分析。

第76页/共95页叔丁基二甲基硅醚

---(TBDMS-ORorTBS-OR)在化学合成中,采用硅基化进行羟基保护生成叔丁基甲基硅基醚是应用较多的方法之一。一般来说,在分子中羟基位阻不大时主要通过TBSCl对羟基进行保护。但当羟基位阻较大时则采用较强的硅醚化试剂TBSOTf来实现。生成的叔丁基二甲基醚在多种有机反应中是相当稳定的,在一定条件下去保护时一般不会影响其他官能团。它在碱性水解时的稳定性约为三甲基硅醚的104倍。它对碱稳定。相对来说对酸敏感些。TBS醚的生成和断裂的难易取决于空间因素,因此常常用于对多官能团,位阻不同的分子进行选择性保护。在伯、仲醇中,TBS基相对来说较易于与伯醇反应。TBS醚的断裂除了常用的四烷基氟化胺外,许多情况下也可用酸来断。当分子内没有对强酸敏感的官能基存在时,可用HCl-MeOH,HCl-Dioxane体系去除TBS,若有对强酸敏感的官能基存在时,则可选用AcOH-THF体系去除。

第77页/共95页叔丁基二甲基硅醚事例第78页/共95页叔丁基二苯基硅醚

---(TBDPS-OR)

在酸性水解条件下TBDPS保护基比TBDMS更加稳定(约100倍),而TBDPS保护基对碱的稳定性比TBDMS要差。另外,由于该保护基的分子量较大,容易使底物固化而易于分离。TBDPS保护基对许多与TBDMS保护基不相容的试剂显出比TBDMS基团更好的稳定性。TBDMS基团在酸性条件下不易迁移。TBDPS醚对K2CO3/CH3OH,对9M氨水、60℃、2h;对MeONa(cat.)/CH3OH、25℃、24h均稳定。该醚对80%乙酸稳定,后者可用于脱除醚中TBDMS,三苯甲基,四氢吡喃保护基也对HBr/AcOH,12℃,2min;对25%~75%甲酸,25℃,2h~6h;以及50%三氟乙酸,25℃,15min稳定。第79页/共95页三异丙基硅醚保护

---(TIPS-OR)酸性水解时,有较大体积的TIPS醚比叔丁基二甲基硅醚要更稳定些。但稳定性比叔丁基二苯基硅基差。TIPS基碱性水解时比TBDMS基或TBDPS基稳定。相对于仲羟基,TIPS基对伯羟基有更好的选择性。第80页/共95页苄醚类保护及脱除

苄醚类主要有苄基,对甲氧苄基及三苯甲基醚

2.1苄基醚保护羟基

一般烷基上的羟基在用苄基醚保护时需要用强碱,但酚羟基的苄基醚保护一般只要用碳酸钾在乙腈或丙酮中回流即可。回流情况下,这类烷基化在乙腈中速度比丙酮中要快四倍左右,因此一般用乙腈做溶剂居多。若反应速度慢可用DMF做溶剂,提高反应温度,或加NaI,KI催化反应。

苄基醚的裂解主要是通过催化加氢的方法,Pd是理想的催化剂,用Pt时会产生芳环上的氢化作用。非芳性的胺可以使催化剂活性降低,阻碍O-脱苄;在氢化体系中加入Na2CO3可以防止苄基被裂解,但可使双键发生还原。孤立烯烃有可能影响苄基醚键的裂解(H2,5%Pd-C,97%产率)。一般而言选择性的大小取决于取代的类型及空间位阻的情况。与酯共扼的三取代的烯烃存在时,苄基的水解也有相当好的选择性。对甲氧苄基基团存在时,苄基的水解(Pd-C,EtOAc,室温,18小时)有非常好的选择性。在反应体系中加入Pyridine可使对甲氧苄基和苄基氢解产生区别。

第81页/共95页苄基的氢解SolventReactionrate(mmH2/min/0.1gcat)THF40Hexanol25Methanol5Toluene2Hexane6苄基的氢解(脱保护)有溶剂的作用,如下列表

Effectofsolventonthehydrogenlysisofbenzylether第82页/共95页苄基醚保护与去保护事例第83页/共95页对甲氧基苄基醚

甲氧基苄醚的合成与苄基醚相似。但甲氧基取代的苄基醚较未取代的苄基醚更容易通过氧化去保护。一般而言,对甲氧基苄醚在合成中更为常用,羟基上对甲氧基苄基的方法和苄基类似,但脱除除了氢解的方法外,还可以氧化除去。下表给出了用二氯二氰苯醌去保护时的相对速率。

CleavageofMPM,DMPM,andTMPMetherswithDDQinCH2Cl2/H2Oat20oCProtectiveGroupTime(h)Yield(%)iiiiiProtectiveGroupTime(h)Yield(%)ii

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论