六年级上《圆的认识》课件_第1页
六年级上《圆的认识》课件_第2页
六年级上《圆的认识》课件_第3页
六年级上《圆的认识》课件_第4页
六年级上《圆的认识》课件_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

六年级上《圆的认识》课件【4篇】(一)圆的标准方程

1、圆的定义:平面内到肯定点的距离等于定长的点的轨迹叫做圆。定点叫圆的圆心,定长叫做圆的半径。

2、圆的标准方程:已知圆心为(a,b),半径为r,则圆的方程为(x-a)2+(y-b)2=r2.

说明:

(1)上式称为圆的标准方程。

(2)假如圆心在坐标原点,这时a=0,b=0,圆的方程就是x2+y2=r2.

(3)圆的标准方程显示了圆心为(a,b),半径为r这一几何性质,即(x-a)2+(y-b)2=r2----圆心为(a,b),半径为r.

(4)确定圆的条件

由圆的标准方程知有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定.因此,确定圆的方程,需三个独立的条件,其中圆心是圆的定位条件,半径是圆的定型条件。

(5)点与圆的位置关系的判定

若点M(x1,y1)在圆外,则点到圆心的距离大于圆的半径,即(x-a)2+(y-b)2>r2

若点M(x1,y1)在圆内,则点到圆心的距离小于圆的半径,即(x-a)2+(y-b)2<r2

(二)圆的一般方程

任何一个圆的方程都可以写成下面的形式:

x2+y2+Dx+Ey+F=0①

将①配方得:

②(x+D/2)2+(y+E/2)2=D2+E2-4F/4

当时,方程①表示以(-D/2,-E/2)为圆心,以为半径的圆;

当时,方程①只有实数解,所以表示一个点(-D/2,-E/2);

当时,方程①没有实数解,因此它不表示任何图形。

故当时,方程①表示一个圆,方程①叫做圆的一般方程。

圆的标准方程的优点在于它明确地指出了圆心和半径,而一般方程突出了方程形式上的特点:

(1)和的系数一样,且不等于0;

(2)没有xy这样的二次项。

以上两点是二元二次方程表示圆的必要条件,但不是充分条件。

要求出圆的一般方程,只要求出三个系数D、E、F就可以了。

(三)直线和圆的位置关系

1、直线与圆的位置关系

讨论直线与圆的位置关系有两种方法:

(l)几何法:令圆心到直线的距离为d,圆的半径为r.

dr直线与圆相离;d=r直线与圆相切;0≤d

数学中考圆的学问点篇二

一、圆

1、圆的有关性质

在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。

由圆的意义可知:

圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。

圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的局部叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。

圆心一样,半径不相等的两个圆叫同心圆。

能够重合的两个圆叫等圆。

同圆或等圆的半径相等。

在同圆或等圆中,能够相互重合的弧叫等弧。

二、过三点的圆

1、过三点的圆

过三点的圆的作法:利用中垂线找圆心

定理:不在同始终线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

2、反证法

反证法的三个步骤:

①假设命题的结论不成立;

②从这个假设动身,经过推理论证,得出冲突;

③由冲突得出假设不正确,从而确定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明1一秘…:设有两个以上是钝角

则两个钝角之和>180°

与三角形内角和等于180°冲突。

不行能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径

圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。

弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

推理2:圆两条平行弦所夹的弧相等。

四、圆心角、弧、弦、弦心距之间的关系

圆是以圆心为对称中心的中心对称图形。

实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。

顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。

定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。

推理:在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。

五、圆周角

顶点在圆上,并且两边都和圆相交的角叫圆周角。

推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

推理3:假如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

由于以上的定理、推理,所添加帮助线往往是添加能构成直径上的圆周角的帮助线。

解同意用题的一般步骤篇三

(一)仔细读题,分析题的类型。

(二)肯定要精确地记清量与量之间的关系,不能乱搞它们之间的关系。

(三)依据该类型题的关系式,然后从问题入手,分析要解答此应用题的必要重要条件是什么?是已知还是未知?还可推断最终一步用什么方法计算;也可从已知条件入手分析条件之间的关系及所得结果。

(四)一般状况下,求总量依据该题的根本式用算术方法解答比拟简便;求重量依据该题根本关系式列方程解答比拟简便。

圆的应用题篇四

1、画一个周长12.56厘米的圆,并用字母标出圆心和一条半径,再求出这个圆的面积。

2、学校有一块圆形草坪,它的直径是30米,这块草坪的面积是多少平方米?假如沿着草坪的四周每隔1.57米摆一盆菊花,要预备多少盆菊花?

3、一个圆和一个扇形的半径相等,圆面积是30平方厘米,扇形的圆心角是36度。求扇形的面积。

4、前轮在720米的距离里比后轮多转40周,假如后轮的周长是2米,求前轮的周长。

5、一个圆形花坛的直径是10厘米,在它的四周铺一条2米宽的小路,这条小路面积是多少平方米?

6、学校有一块直径是40M的圆形空地,规划在正中心修一个圆形花坛,剩下局部铺一条宽6米的水泥路面,水泥路面的面积是多少平方米?

7、有一个圆环,内圆的周长是31.4厘米,外圆的周长是62.8厘米,圆环的宽是多少厘米?

8、一只挂钟的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论