2021年甘肃省武威市普通高校对口单招数学月考卷(含答案)_第1页
2021年甘肃省武威市普通高校对口单招数学月考卷(含答案)_第2页
2021年甘肃省武威市普通高校对口单招数学月考卷(含答案)_第3页
2021年甘肃省武威市普通高校对口单招数学月考卷(含答案)_第4页
2021年甘肃省武威市普通高校对口单招数学月考卷(含答案)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年甘肃省武威市普通高校对口单招数学月考卷(含答案)

一、单选题(20题)1.若不等式x2+x+c<0的解集是{x|-4<x<3},则c的值等于()A.12B.-12C.11D.-11

2.已知a=(1,-1),b=(-1,2),则(2a+b)×a=()A.1B.-1C.0D.2

3.已知拋物线方程为y2=8x,则它的焦点到准线的距离是()A.8B.4C.2D.6

4.若一几何体的三视图如图所示,则这个几何体可以是()A.圆柱B.空心圆柱C.圆D.圆锥

5.贿圆x2/7+y2/3=1的焦距为()A.4

B.2

C.2

D.2

6.正方体棱长为3,面对角线长为()A.

B.2

C.3

D.4

7.计算sin75°cos15°-cos75°sin15°的值等于()A.0

B.1/2

C.

D.

8.已知向量a=(1,1),b=(2,x),若a+b与4b-2a平行,则实数x的值是()A.-2B.0C.2D.1

9.若集合A={0,1,2,3,4},A={1,2,4},则A∪B=()A.|0,1,2,3,4}B.{1,2,3,4}C.{1,2}D.{0}

10.从1,2,3,4这4个数中任取两个数,则取出的两数都是奇数的概率是()A.2/3B.1/2C.1/6D.1/3

11.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-4/3

B.-3/4

C.

D.2

12.A.偶函数B.奇函数C.既不是奇函数,也不是偶函数D.既是奇函数,也是偶函数

13.A.B.C.D.

14.函数y=-(x-2)|x|的递增区间是()A.[0,1]B.(-∞,l)C.(l,+∞)D.[0,1)和(2,+∞)

15.若102x=25,则10-x等于()A.

B.

C.

D.

16.设a>b>0,c<0,则下列不等式中成立的是A.ac>bc

B.

C.

D.

17.下列函数是奇函数且在区间(0,1)内是单调递增的是()A.y=xB.y=lgxC.y=ex

D.y=cosx

18.两个平面之间的距离是12cm,—条直线与他们相交成的60°角,则这条直线夹在两个平面之间的线段长为()A.cm

B.24cm

C.cm

D.cm

19.A.(1,2)B.(-1,2)C.(-1,-2)D.(1,-2)

20.己知向量a=(3,-2),b=(-1,1),则3a+2b

等于()A.(-7,4)B.(7,4)C.(-7,-4)D.(7,-4)

二、填空题(20题)21.等差数列中,a1>0,S4=S9,Sn取最大值时,n=_____.

22.若长方体的长、宽、高分别为1,2,3,则其对角线长为

23.抛物线y2=2x的焦点坐标是

24.

25.

26.设全集U=R,集合A={x|x2-4<0},集合B={x|x>3},则_____.

27.展开式中,x4的二项式系数是_____.

28.如图所示的程序框图中,输出的S的值为______.

29.甲,乙两人向一目标射击一次,若甲击中的概率是0.6,乙的概率是0.9,则两人都击中的概率是_____.

30.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是_______.

31.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为_____.

32.sin75°·sin375°=_____.

33.执行如图所示的程序框图,若输入的k=11,则输出的S=_______.

34.算式的值是_____.

35.已知函数f(x)=ax3的图象过点(-1,4),则a=_______.

36.

37.要使的定义域为一切实数,则k的取值范围_____.

38.

39.

40.

三、计算题(5题)41.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

42.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

43.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

44.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

45.解不等式4<|1-3x|<7

四、简答题(5题)46.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。

47.由三个正数组成的等比数列,他们的倒数和是,求这三个数

48.化简

49.如图,四棱锥P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求证:BC丄平面PAC。(2)求点B到平面PCD的距离。

50.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.

五、解答题(5题)51.

52.某化工厂生产的某种化工产品,当年产量在150吨至250吨之内,其年生产的总成本:y(万元)与年产量x(吨)之间的关系可近似地表示为y=x2/10-30x+400030x+4000.(1)当年产量为多少吨时,每吨的平均成本最低,并求每吨最低平均成本;(2)若每吨平均出厂价为16万元,求年生产多少吨时,可获得最大的年利润,并求最大年利润.

53.如图,在正方体ABCD—A1B1C1D1中,E,F分别为棱AD,AB的中点.(1)求证:EF//平面CB1D1;(2)求证:平面CAA1C1丄平面CB1D1

54.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

55.

六、证明题(2题)56.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.

57.若x∈(0,1),求证:log3X3<log3X<X3.

参考答案

1.B

2.A平面向量的线性运算.因为a=(1,-1),b=(-1,2),所以2a+b=2(1,-1)+(-1,2)=(1,0),得(2a+b)×a==(1,0)×(1,-1)=1

3.B抛物线方程为y2=2px=2*4x,焦点坐标为(p/2,0)=(2,0),准线方程为x=-p/2=-2,则焦点到准线的距离为p/2-(-p/2)=p=4。

4.B几何体的三视图.由三视图可知该几何体为空心圆柱

5.A椭圆的定义.因为a2=7,b2=3,所以c2-a2-b2=4,c=2,2c=4.

6.C面对角线的判断.面对角线长为

7.D三角函数的两角和差公式sin75°cosl5°-cos75°sinl5°=sin(75°-15°)=sin60°=

8.C

9.A集合的并集.A∪B是找出所有元素写在同一个集合中.

10.C古典概型.任意取到两个数的方法有6种:1,2;1,3;1,4;2,3;2,4;3,4;,满足题意的有1种:1,3;则要求的概率为1/6.

11.A点到直线的距离公式.由圆的方程x2+y2-2x-8y+130得圆心坐标为(1,4),由点到直线的距离公式得d=,解之得a=-4/3.

12.A

13.A

14.A

15.B

16.B

17.A由奇函数定义已知,y=x既是奇函数也单调递增。

18.A

19.D

20.D

21.6或7,由题可知,4a1+6d=9a1+36d,解得a1=-6d,所以Sn=-6dn+n(n+1)d/2=,又因为a1大于0,d小于0,所以当n=6或7时,Sn取最大值。

22.

23.(1/2,0)抛物线y2=2px(p>0)的焦点坐标为F(P/2,0)。∵抛物线方程为y2=2x,

∴2p=2,得P/2=1/2

∵抛物线开口向右且以原点为顶点,

∴抛物线的焦点坐标是(1/2,0)。

24.2/5

25.外心

26.B,

27.7

28.11/12流程图的运算.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=1/2+1/4+1/6的值,由于1/2+1/4+1/6=11/12故答案为:11/12

29.0.54,由于甲击中的事件和乙击中的事件互相独立,因此可得甲乙同时击中的概率为P=0.6*0.9=0.54.

30.150.分层抽样方法.该校教师人数为2400×(160-150)/160=150(人).

31.6π圆柱的侧面积计算公式.利用圆柱的侧面积公式求解,该圆柱的侧面积为27x1x2=4π,一个底面圆的面积是π,所以该圆柱的表面积为4π+27π=6π.

32.

33.15程序框图的运算.模拟程序的运行,可得k=11,n=1,S=1不满足条件S>11,执行循环体,n=2,S=3,不满足条件S>11,执行循环体,n=3,S=6,不满足条件S>11,执行循环体,n=4,S=10,不满足条件S>11,执行循环体,N=5,S=15,此时,满足条件S>11,退出循环,输出S的值为15.故答案为15.

34.11,因为,所以值为11。

35.-2函数值的计算.由函数f(x)=ax3-2x过点(-1,4),得4=a(-1)3-2×(-1),解得a=-2.

36.2π/3

37.-1≤k<3

38.16

39.-1

40.{x|0<x<1/3}

41.

42.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

43.

44.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

45.

46.

47.设等比数列的三个正数为,a,aq由题意得解得,a=4,q=1或q=解得这三个数为1,4,16或16,4,1

48.sinα

49.证明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC则BC丄平面PAC(2)设点B到平面PCD的距离为hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1则△ADC为等边三角形,且AC=1PA=

PD=PC=2

50.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=

51.

52.(1)设每吨的平均成本为W(万元/吨),ω=y/x=x/10+4000/x-30≥-30=10,当且仅当x/10=4000/x,x=200吨时每吨成本最低

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论