版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章圆3.4圆周角和圆心角的关系第1课时圆周角与圆周角定理1.了解圆周角的概念.2.理解圆周角定理的证明.3.经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想.3.下列命题是真命题的是()①垂直弦的直径平分这条弦②相等的圆心角所对的弧相等③圆既是轴对称图形,又是中心对称图形A.①②B.①③C.②③D.①②③1.圆心角的定义?答:相等.答:顶点在圆心的角叫圆心角.2.圆心角的度数和它所对的弧的度数的关系?B圆心角顶点发生变化时,我们得到几种情况?A.OBC.思考:三个图中的∠BAC的顶点A各在圆的什么位置?角的两边和圆是什么关系?..AOBCA.OBC.你能仿照圆心角的定义给圆周角下定义吗?.OBCA特征:①角的顶点在圆上.圆周角定义:
顶点在圆上,并且两边分别与圆还有另一个交点的角叫圆周角.②角的两边都与圆相交.探究1.判断下列各图形中的角是不是圆周角.图1图2图3图4图52、指出图中的圆周角.AOBC∠ACO∠ACB∠BCO∠OAB∠BAC∠OAC∠ABO∠CBO∠ABC××√××【巩固练习】说说你的想法,并与同伴交流.提示:注意圆心角与圆周角的位置关系.ABC●OABC●O●OABC如图,观察弧AC所对的圆周角∠ABC与圆心角∠AOC,它们的大小有什么关系?圆周角和圆心角的关系议一议解:∵∠AOC是△ABO的外角,∴∠AOC=∠B+∠A.∵OA=OB,●OABC∴∠A=∠B.∴∠AOC=2∠B.
即∠ABC=∠AOC.你能写出这个命题吗?一条弧所对的圆周角等于它所对的圆心角的一半.1.首先考虑一种特殊情况:当圆心(O)在圆周角(∠ABC)的一边(BC)上时,圆周角∠ABC与圆心角∠AOC的大小关系.提示:能否转化为1的情况?过点B作直径BD.由1可得:你能写出这个命题吗?一条弧所对的圆周角等于它所对的圆心角的一半.●OABCD如果圆心不在圆周角的一边上,结果会怎样?2.当圆心(O)在圆周角(∠ABC)的内部时,圆周角∠ABC与圆心角∠AOC的大小关系会怎样?∠ABD=∠AOD,∠CBD=∠COD,∴∠ABC=∠AOC.提示:能否也转化为1的情况?过点B作直径BD.由1可得:你能写出这个命题吗?一条弧所对的圆周角等于它所对的圆心角的一半.DABC3.当圆心(O)在圆周角(∠ABC)的外部时,圆周角∠ABC与圆心角∠AOC的大小关系会怎样?∠ABD=∠AOD,∠CBD=∠COD,∴∠ABC=∠AOC.●O圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.提示:圆周角定理是承上启下的知识点,要予以重视.●OABC●OABC●OABC
即∠ABC=∠AOC.DD圆心在角的边圆心在角圆心在角上内外定理:∠AOB=2∠BOCAOBC∠ACB=2∠BAC证明:
∠ACB=∠AOB∠BAC=∠BOC例.如图:OA,OB,OC都是⊙O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC.【例题】BAO70°x1.求圆中角x的度数AOx120°CCDB2.如图,在直径为AB的半圆中,O为圆心,C,D为半圆上的两点,∠COD=50°,则∠CAD=_______.25º【跟踪训练】答案:35°120°3.判断(1)顶点在圆上的角叫圆周角.()(2)圆周角的度数等于所对弧的度数的一半.()
×√(2)如图,已知圆心角∠AOB=100°,则圆周角∠ACB=_____,∠ADB=______.DAOCB4.计算(1)半径为R的圆中,有一弦分圆周成1:4两部分,则弦所对的圆周角的度数是_______________.130º50º36º或144°O·AOCB1.(重庆·中考)如图,△ABC是⊙O的内接三角形,若∠ABC=70°则∠AOC的度数等于()A.140°B.130°C.120°D.110°答案:A2.(潼南·中考)如图,已知AB为⊙O的直径,点C在⊙O上,∠C=15°,则∠BOC的度数为()A.15°B.30° C.45° D.60°答案:B
3.(德化·中考)如图,点B,C在⊙O上,且BO=BC,则圆周角∠BAC等于()答案:DA.60°B.50°C.40°D.30°4.(红河·中考)如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC的度数为()A.30°B.40°C.50°D.60°答案:A【规律方法】解决圆周角和圆心角的计算和证明问题,要准确找出同弧所对的圆周角和圆心角,然后再灵活运用圆周角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四塔吊设备购置与销售专项合同范本3篇
- 二零二四年家电销售顾问聘用与售后服务合同3篇
- 二零二五版出租车承包合同绿色出行推广合作2篇
- 二零二五版豪华度假酒店承包经营合同规范范本3篇
- 二零二五版公益劳动服务基地共建与社区公共服务拓展合同3篇
- 年度营养型输液竞争策略分析报告
- 年度智能儿童成长仪市场分析及竞争策略分析报告
- 2024年钢材交易:居间代理全套合同
- 二零二五版水利工程承包居间代理服务合同2篇
- 2025年变压器智能化升级采购及技术支持合同3篇
- 安徽省合肥市包河区2023-2024学年九年级上学期期末化学试题
- 《酸碱罐区设计规范》编制说明
- PMC主管年终总结报告
- 售楼部保安管理培训
- 仓储培训课件模板
- 2025届高考地理一轮复习第七讲水循环与洋流自主练含解析
- GB/T 44914-2024和田玉分级
- 2024年度企业入驻跨境电商孵化基地合作协议3篇
- 《形势与政策》课程标准
- 2023年海南省公务员录用考试《行测》真题卷及答案解析
- 桥梁监测监控实施方案
评论
0/150
提交评论