FEM在求解连续梁振动问题中的应用_第1页
FEM在求解连续梁振动问题中的应用_第2页
FEM在求解连续梁振动问题中的应用_第3页
FEM在求解连续梁振动问题中的应用_第4页
FEM在求解连续梁振动问题中的应用_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ApplicationofFEMinsolvingthecontinuousbeamvibrationproblem)Ifwewrite,thisisasetoflinearhomogenousequationsintheunknowns,,…,.Bysolvingthefollowingeigenequation,wewillhavenrootsalsocalledtheeigenvalue,,…,.Notingthat,thenaturalfrequencyisgivenby.TheresultsoftheFEManalysisBasedonthetheorymentionedabove,weobtainaFEMcodeaccordingtofigure5usingMATLAB.Submittingtheboundarycondition,thematerialpropertiesandgeometryparametersintotheaboveequations,weobtainthefollowingresultsusingtheMATLABcode.Discretethebeaminto5elements,thenwegettheelementmassmatrixandstiffnessmatrixasfollows FigureSEQFigure\*ARABIC5theprogramchartThetotalmassmatrixandthetotalstiffnessmatrixThecantileverbeamTable1listthetop5inherentfrequenciesofthecantileverbeam.Aswecanseeintable1,theFEMresultsagreedwellwiththetheoreticalvalue.Inaddition,theerrorachievedbydividingthebeaminto5elementsislargerthantheerrorobtainedfromthemodelwith50discreteelements.Thevibrationmode(basedonthedatafromthemodelwith50discreteelements)correspondingtothetop6naturalfrequenciesarepresentedfigure6.TableSEQTable\*ARABIC1thenaturalfrequencyofcantileverbeamOrderTheoreticalvalueFEMresults(5elements)FEMresults(50elements)Error(%)Error(%)132.912032.91610.01245332.91570.011101602206.271206.3820.0538736206.2790.003888393577.473579.6620.379044577.5870.019798941131.851145.111.172051131.840.00044828151871.011900.601.581491871.020.000462699ThefirstordervibrationmodeThesecondordervibrationmodeThethirdordervibrationmodeTheforthordervibrationmodeThefifthordervibrationmodeThesixthordervibrationmodeFigureSEQFigure\*ARABIC6vibrationmodeofthecantileverbeamThesimplysupportedbeamTable2listthetop5inherentfrequenciesofthesimplysupportedbeam.Aswecanseeintable2,theFEMresultsagreedwellwiththetheoreticalvalue.Additionally,theerrorachievedbydividingthebeaminto5elementsislargerthantheerrorobtainedfromthemodelwith50discreteelements.Thevibrationmode(basedonthedatafromthemodelwith50discreteelements)correspondingtothetop6naturalfrequenciesarepresentedfigure7.TableSEQTable\*ARABIC2thenaturalfrequencyofsimplysupportedbeamOrderTheoreticalvalueFEMresults(5elements)FEMresults(50elements)Error(%)Error(%)192.405592.39560.010702592.39560.01110162370.195369.5830.165673369.5830.003888393838.165831.5610.794154831.5620.019798941512.391478.332.303681478.330.00044828152563.792309.8910.99182309.910.000462699ThefirstordervibrationmodeThesecondordervibrationmodeThethirdordervibrationmodeTheforthordervibrationmodeThefifthordervibrationmodeThesixthordervibrationmodeFigureSEQFigure\*ARABIC7vibrationmodeofthesimplysupportedbeamAppendix:MATLABcode%%利用有限元方法求解悬臂梁和简支梁的振动问题%%clc;clearall;symsxlrhobtEA=b*t;I=b*t^3/12;n=input('Pleaseinputthenumberofdiscreteelementsn=');%inputthetotalelementsofthediscreteelement%%difinetheshapefunctionN1=1-3*(x/l)^2+2*(x/l)^3;N2=(x/l-2*(x/l)^2+(x/l)^3)*l;N3=3*(x/l)^2-2*(x/l)^3;N4=((x/l)^3-(x/l)^2)*l;%%%%solvetheelementmassmatrixandstiffnessmatix,totalmassmatrixandstiffnessmatrixN=[N1,N2,N3,N4];Me0=int(N'*N,x,0,l);%obtaintheelementmassmatrixMe=rho*A*Me0Ke0=int(diff(N.',x,2)*diff(N,x,2),x,0,l)%obtaintheelementstiffnessmatrixKe=(E*I)*Ke0;M0=zeros(2*(n+1),2*(n+1));K0=zeros(2*(n+1),2*(n+1));fori=1:1:nae=zeros(4,2*(n+1));forj=1:1:4ae(j,2*i+j-2)=1;%difinethecoordinatetransformationmatrixendM0=M0+ae.'*Me*ae;%solvethetotalmassstiffnessmatrixK0=K0+ae.'*Ke*ae;%solvethetotalstiffnessmatixenddisp('TheelementmassmatrixMe=');disp(Me);%showtheelementmassmatrixdisp('TheelementstiffnessmatrixKe=');disp(Ke);%showtheelementtiffnessmatrixdisp('ThetotalmassmatrixM=');disp(M0);%showthetotalmassmatrixdisp('ThetotalstiffnessmatrixK=');disp(K0);%showthetotaltiffnessmatrix%%Me1=matlabFunction(Me);Ke1=matlabFunction(Ke);M1=matlabFunction(M0);%将质量符号矩阵转换为代数矩阵K1=matlabFunction(K0);%将刚度符号矩阵转换为代数矩阵%%inputthegeometryparametersandphysicalconstantsL=0.4;%thetotallengthofthebeam,mb=0.02;%thewidthofthebeam,mt=0.001;%thethicknessofthebeam,mE=2.1*10^11;%theelasticmodulus,GParho=7800;%thedensityofthebeam,kg/m^3l=L/n;MNumeric=M1(b,l,t,rho);KNumeric=K1(E,b,l,t);disp('ThenumericaltotalmassmatrixM=');disp(MNumeric);%showthetotalmassmatrixdisp('ThenumericaltotalstiffnessmatrixK=');disp(KNumeric);%showthetotaltiffnessmatrix%%1.悬臂梁的振动求解%对于悬臂梁考虑约束条件节点1:挠度为零,转角为零;%采用消元法:消去整体质量矩阵的前两行,前两列;消去整体刚度矩阵的前两行,前两列;M=MNumeric([3:2*n+2],[3:2*n+2]);K=KNumeric([3:2*n+2],[3:2*n+2]);[X,lamda]=eig(K,M);omega=sort(sqrt(diag(lamda)));XX=zeros(n,n);XX(1,:)=0;fori=2:nforj=1:nXX(i,j)=X(2*(i-1)+1,j);endend%%画出前五阶振型r=1:n;fori=1:6figure('Color',[111]);plot(r,XX(:,i));xlabel('\itx\rm/\itl','FontName','TimesNewRoman','FontSize',36);ylabel('u\rm(\itx\rm)','FontName','TimesNewRoman','FontSize',36);set(gca,'Linewidth',2);%settingupthelinewidthofthecoordinateset(gca,'FontName','TimesNewRoman','FontSize',36);set(get(gca,'Children'),'linewidth',3);%settingupthelinewidthofthecurveend%%根据振动力学方程得到悬臂梁固有频率betal1=1.875;betal2=4.694;betal=[];omega_real=[];error=[];fori=1:20betal(1)=betal1;betal(2)=betal2;ifi>=3betal(i)=pi*(i-0.5);endomega_real(i)=(betal(i)/L)^2*sqrt(E*(b*t^3/12)/(rho*b*t));endifn>=20m=20;elsem=n;endfori=1:merror(i)=(abs(omega_real(i)-omega(i))/omega_real(i))*100;%outputthepercentageerrorend%%简支梁的振动求解%%%对于简支梁考虑约束条件:第一个节点的挠度为零,最后一个节点的挠度为零;%采用消元法:消去整体质量矩阵的第1行,第1列;倒数第二行和倒数第二列%消去整体刚度矩阵的第1行,第1列;倒数第二行和倒数第二列Mssb=MNumeric([2:2*n,2*(n+1)],[2:2*n,2*(n+1)]);Kssb=KNumeric([2:2*n,2*(n+1)],[2:2*n,2*(n+1)]);[Xssb,lamdassb]=eig(Kssb,Mssb);omegassb=sort(sqrt(diag(lamdassb)));XXssb=zeros(n,n);XXssb(1,:)=0;XXssb(n,:)=0;fori=2:n-1forj=1:nXXssb(i,j)=Xssb(2*(i-1),j);endend%%根据振动力学方程得到简

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论