专题16 概率(讲+练)-【2022年】中考数学二轮复习核心专题复习攻略【有答案】_第1页
专题16 概率(讲+练)-【2022年】中考数学二轮复习核心专题复习攻略【有答案】_第2页
专题16 概率(讲+练)-【2022年】中考数学二轮复习核心专题复习攻略【有答案】_第3页
专题16 概率(讲+练)-【2022年】中考数学二轮复习核心专题复习攻略【有答案】_第4页
专题16 概率(讲+练)-【2022年】中考数学二轮复习核心专题复习攻略【有答案】_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题16概率复习考点攻略考点一概率的定义与事件的分类1.概率:率的统计定义:一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。即.概率2.必然事件:在一定条件下一定会发生的事件,它的概率是1.3.不可能事件:在一定条件下一定不会发生的事件,它的概率是0.4.随机事件:在一定条件下可能发生,也可能不发生的事件,它的概率是0~1之间.【例1】下列事件中是不可能事件的是()A.守株待兔 B.瓮中捉鳖 C.水中捞月 D.百步穿杨【答案】C【解析】解:A、守株待兔,不一定就能达到,是随机事件,故选项不符合;B、瓮中捉鳖是必然事件,故选项不符合;C、水中捞月,一定不能达到,是不可能事件,选项不符合;D、百步穿杨,未必达到,是随机事件,故选项不符合;故选C.考点二概率的计算1.公式法:P(A)=,其中n为所有事件的总数,m为事件A发生的总次数.2.列举法(1)列表法:当一次试验要涉及两个因素,并且可能出现的结果数目较多时,应不重不漏地列出所有可能的结果,通常采用列表法求事件发生的概率.(2)画树状图法:当一次试验要涉及2个或更多的因素时,通常采用画树状图来求事件发生的概率.【注意】当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。【例2】不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是______.【答案】.【解析】解:画树状图如下:由树状图知,共有12种等可能结果,其中取出2个小球的颜色恰好是一红一蓝的有2种结果,所以取出2个小球的颜色恰好是一红一蓝的概率为=,故答案为:.【例3】如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是()A. B. C. D.【答案】B【解析】解:如图,连接EG,FH,设AD=BC=2a,AB=DC=2b,则FH=AD=2a,EG=AB=2b,∵四边形EFGH是菱形,∴S菱形EFGH===2ab,∵M,O,P,N点分别是各边的中点,∴OP=MN=FH=a,MO=NP=EG=b,∵四边形MOPN是矩形,∴S矩形MOPN=OPMO=ab,∴S阴影=S菱形EFGH-S矩形MOPN=2ab-ab=ab,∵S矩形ABCD=ABBC=2a2b=4ab,∴飞镖落在阴影区域的概率是,故选B.考点三利用频率估计概率1.定义:一般地,在大量重复试验中,如果事件发生的频率稳定在某个常数P附近,因此,用一个事件发生的频率来估计这一事件发生的概率.2.适用条件:当试验的所有可能结果不是有限个,或各种结果发生的可能性不相等时,我们一般要通过统计频率来估计概率.3.方法:进行大量重复试验,当事件发生的频率越来越靠近一个常数时,该常数就可认为是这个事件发生的概率.【例4】为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.身高人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于的概率是()A.0.32 B.0.55 C.0.68 D.0.87【答案】C【解析】解:样本中身高不低于170cm的频率,

所以估计抽查该地区一名九年级男生的身高不低于170cm的概率是0.68.故选:C.考点四概率的应用概率是和实际结合非常紧密的数学知识,可以对生活中的某些现象做出评判,如解释摸奖、评判游戏活动的公平性、数学竞赛获奖的可能性等等,还可以对某些事件做出决策.【例5】今年2﹣4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.【答案】(1)160人;(2)100万元;(3)2.15万;(4)【解析】解:(1)轻症患者的人数=200×80%=160(人);(2)该市为治疗危重症患者共花费钱数=200×(1﹣80%﹣15%)×10=100(万元);(3)所有患者的平均治疗费用==2.15(万元);(4)列表得:ABCDEA(B,A)(C,A)(D,A)(E,A)B(A,B)(C,B)(D,B)(E,B)C(A,C)(B,C)(D,C)(E,C)D(A,D)(B,D)(C,D)(E,D)E(A,E)(B,E)(C,E)(D,E)由列表格,可知:共有20种等可能的结果,恰好选中B、D两位同学的有2种情况,∴P(恰好选中B、D)==.【例6】某校为了解初中学生每天在校体育活动时间(单位:h),随机调查了该校的部分初中学生,根据调查结果,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为,图①中m的值为;

(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.【答案】(1)40,25;(2)1.5;(3)720人【解析】解:(1)4÷10%=40,10÷40×100%=25%,∴m=25.故答案为40;25.(2)∵x=0.9×4+1.2×8+1.5×15+1.8×10+2.1×34+8+15+10+3=1.5∴这组数据的平均数是1.5.∵这组数据中,1.5出现了15次,出现的次数最多,∴这组数据的众数是1.5.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5+1.52∴这组数据的中位数是1.5.(3)在统计的这组每天在校体育活动时间的样本数据中,每天在校体育活动时间大于1h的学生人数占90%,∴估计该校800名初中学生中,每天在校体育活动时间大于1h的人数占90%,有800×90%=720(人).第一部分选择题一、选择题(本题有10小题,每题3分,共30分)1.下列事件中,是必然事件的是()A.掷一枚质地均匀的硬币,一定正面向上B.车辆随机到达一个路口,遇到红灯C.如果a2=b2,那么a=bD.将花生油滴在水中,油会浮在水面上【答案】【解析】A.掷一枚质地均匀的硬币,正面向上是随机事件.B.车辆随机到达一个路口,遇到红灯是随机事件;C.如果a2=b2,那么a=b,也可能是a=–b,此事件是随机事件;D.将花生油滴在水中,油会浮在水面上是必然事件;故选D.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A. B. C. D.【答案】A【解析】解:由扇形统计图可得,指针落在数字“Ⅱ”所示区域内的概率是:.故选:A.如图,电路图上有个开关、、、和个小灯泡,同时闭合开关、或同时闭合开关、都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是()A.只闭合个开关 B.只闭合个开关 C.只闭合个开关 D.闭合个开关【答案】B【解析】解:由小灯泡要发光,则电路一定是一个闭合的回路,只闭合个开关,小灯泡不发光,所以是一个不可能事件,所以A不符合题意;闭合个开关,小灯泡发光是必然事件,所以D不符合题意;只闭合个开关,小灯泡有可能发光,也有可能不发光,所以B符合题意;只闭合个开关,小灯泡一定发光,是必然事件,所以C不符合题意.故选B.小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,……按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是()A. B. C. D.【答案】D【解析】解:由图可知:第1个图形共有1个正方体,最下面有1个带“心”字正方体;第2个图形共有1+2=3个正方体,最下面有2个带“心”字正方体;第3个图形共有1+2+3=6个正方体,最下面有3个带“心”字正方体;第4个图形共有1+2+3+4=10个正方体,最下面有4个带“心”字正方体;...第n个图形共有1+2+3+4+...+n=个正方体,最下面有n个带“心”字正方体;则:第100个图形共有1+2+3+4+...+100==5050个正方体,最下面有100个带“心”字正方体;∴从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是,故选:D.小李与小陈做猜拳游戏,规定每人每次至少出一个手指,两人出拳的手指之和为偶数时小李获胜,那么小李获胜的概率为()A.B.C.D.【答案】A【解析】画出树状图,共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,由概率公式得出答案.画树状图如下:共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,∴小李获胜的概率为,故选A.投掷一枚质地均匀的骰子两次,向上一面的点数依次记为a,b.那么方程x2+ax+b=0有解的概率是()A. B. C. D.【答案】D.【解析】画树状图展示所有36种等可能的结果数,再找出使a2﹣4b≥0,即a2≥4b的结果数,然后根据概率公式求解.画树状图为:共有36种等可能的结果数,其中使a2﹣4b≥0,即a2≥4b的有19种,∴方程x2+ax+b=0有解的概率是。如图,电路图上有四个开关A、B、C、D和一个小灯泡,则任意闭合其中两个开关,小灯泡发光的概率是A. B. C. D.【答案】A【解析】画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为=.故选A.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x<160160≤x<170170≤x<180x≥180人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是A.0.85 B.0.57 C.0.42 D.0.15【答案】D【解析】样本中身高不低于180cm的频率==0.15,所以估计他的身高不低于180cm的概率是0.15.故选D.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A. B. C. D.【答案】B【解析】解:从长度分别为2、4、6、7的四条线段中任选三条有如下4种情况:2、4、6;2、4、7;

2、6、7;4、6、7;其中能构成三角形的有2、6、7;4、6、7这两种情况,

所以能构成三角形的概率是,故选:B.某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九环以上”的频率(结果保留两位小数)0.900.850.820.840.820.82根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()

A.0.90 B.0.82 C.0.85 D.0.84【答案】B【解析】解:∵从频率的波动情况可以发现频率稳定在0.82附近,∴这名运动员射击一次时“射中九环以上”的概率是0.82.故选:B.填空题填空题(本题有6小题,每题4分,共24分)11.在一个不透明的袋子中装有4个白球,a个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为,则______.【答案】8【解析】解:由题意可知从袋子中随机摸出1个球,摸到红球的概率为,∴,∴,故答案为:8.12.表中记录了某种苹果树苗在一定条件下移植成活的情况:由此估计这种苹果树苗移植成活的概率约为_____.(精确到0.1)【答案】0.9【分析】利用表格中的数据求出多批次成活率的平均数即可估算这种苹果树移植成活率的概率.【详解】解:根据表格数据可知:苹果树苗移植成活率的平均数:所以估计这种苹果树苗移植成活的概率约为0.9.故答案为:0.9.同时掷两枚质地均匀的骰子,每枚骰子的六个面上分别刻有1到6的点数,则这两枚骰子向上的一面出现的点数相同的概率为_______________.【答案】【解析】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)由表可知一共有36种情况,两枚骰子点数相同的有6种,所以两枚骰子点数相同的概率为=大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的苏康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为________.【答案】2.4【解析】∵正方形的二维码的边长为2cm,∴正方形二维码的面积为,∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,∴黑色部分的面积占正方形二维码面积得60%,∴黑色部分的面积约为:,故答案为.在一个不透明布袋里装有3个白球、2个红球和a个黄球,这些球除颜色不同其它没有任何区别.若从该布袋里任意摸出1个球,该球是黄球的概率为,则a等于.【答案】5.【解析】根据题意知=,解得a=5,经检验:a=5是原分式方程的解,∴a=5,故答案为:5.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是_____.【答案】【解析】解:画出树状图得:∵共有6种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有1种结果,∴出场顺序恰好是甲、乙、丙的概率为,故答案为:.解答题三、解答题(本题有6小题,共46分)17.一个不透明的布袋中有4个红球、5个白球、11个黄球,它们除颜色外都相同.(1)求从袋中摸出一个球是红球的概率;(2)现从袋中取走若干个黄球,并放入相同数量的红球,搅拌均匀后,要使从袋中摸出一个球是红球的概率不小于,问至少需取走多少个黄球?【答案】(1)15;(2)【解析】(1)∵袋中有4个红球、5个白球、11个黄球,∴摸出一个球是红球的概率==.(2)设取走x个黄球,则放入x个红球,由题意得,≥,解得x≥,∵x为整数,∴x的最小正整数值是3.答:至少取走3个黄球.18.某公司共有400名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析.频数分布表组别销售数量(件)频数频率A20≤x<4030.06B40≤x<6070.14C60≤x<8013aD80≤x<100m0.46E100≤x<12040.08合计b1请根据以上信息,解决下列问题:(1)频数分布表中,a=,b=;

(2)补全频数分布直方图;(3)如果该季度销量不低于80件的销售人员将被评为“优秀员工”,试估计该季度被评为“优秀员工”的人数.

【答案】解:(1)0.2650【解析】b=3÷0.06=50,a=1-(0.06+0.14+0.46+0.08)=0.26或a=13÷50=0.26.(2)m=50-3-7-13-4=23,所以补全条形统计图如图所示:D,E两组的频率之和=0.46+0.08=0.54,所以该季度被评为“优秀员工”的人数约有:400×0.54=216(人)19.为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是__________;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.【答案】(1).(2)树状图见解析,八(1)班和八(2)班抽中不同歌曲的概率为.【解析】(1)因为有A,B,C共3种等可能结果,所以八(1)班抽中歌曲《我和我的祖国》的概率是;故答案为:.(2)树状图如图所示:共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率为=.今年2﹣4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.【答案】(1)160人;(2)100万元;(3)2.15万;(4)【解析】解:(1)轻症患者的人数=200×80%=160(人);(2)该市为治疗危重症患者共花费钱数=200×(1﹣80%﹣15%)×10=100(万元);(3)所有患者的平均治疗费用==2.15(万元);(4)列表得:ABCDEA(B,A)(C,A)(D,A)(E,A)B(A,B)(C,B)(D,B)(E,B)C(A,C)(B,C)(D,C)(E,C)D(A,D)(B,D)(C,D)(E,D)E(A,E)(B,E)(C,E)(D,E)由列表格,可知:共有20种等可能的结果,恰好选中B、D两位同学的有2种情况,∴P(恰好选中B、D)==.我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:代号活动类型A经典诵读与写作B数学兴趣与培优C英语阅读与写作D艺体类E其他为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论