版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
切线证明法一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.证明:连结OE,AD.∵AB是⊙O的直径,∴AD⊥BC.又∵∴AD⊥BC.又∵AB=BC,∴BD=DE,∠1=∠2.又∵OB=OE,OF=OF,∴△BOF≌△EOF(SAS)∴∠OBF=∠OEF.∵BF与⊙O相切,∴OB⊥BF.∴∠OEF=900.
说明:此题是通过证明三角形全等证明垂直的例2如图,AD是∠BAC的平分线,求证:PA与⊙O相切.证明一:作直径AE,连结EC.∵AD是∠BAC的平分线,∴∠DAB=∠DAC.∵PA=PD,∴∠2=∠1+∠DAC.∵∠2=∠B+∠DAB,∴∠1=∠B.P为BC延长线上一点,且PA=PD.又∵∠B=∠E,∴∠P为BC延长线上一点,且PA=PD.∴AC⊥EC,∠E+∠EAC=900∴∠1+∠EAC=900即OA⊥PA.∴PA与⊙O相切.证明二:延长AD交⊙O于E,连结∵A⌒D是⌒∠BAC的平分线,∴BE=CE,证明二:∴OE⊥BC.∴∠E+∠BDE=900.∵OA=OE,∴∠E=∠1.∵PA=PD,∴∠PAD=∠PDA.又∵∠PDA=∠BDE,∴∠1+∠PAD=900即OA⊥PA.∴PA与⊙O相切说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用例3如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M求证:DM与⊙O相切.证明一:连结OD.∵AB=AC,∴∠B=∠C.∵OB=OD,∴∠1=∠B.∴∠1=∠C.∴OD∥AC.∵DM⊥AC,∴DM⊥OD.∴DM与⊙O相切证明二:连结OD,AD.∵AB是⊙O的直径,∴AD⊥BC.又∵AB=AC,∴∠1=∠2.∵DM⊥AC,∴∠2+∠4=900∴∠1=∠3.∴∠3+∠4=900即OD⊥DM.∴DM是⊙O的切线说明:证明一是通过证平行来证明垂直的.说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,解题中注意充分利用已知及图上已知.例4如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.求证:DC是⊙O的切线证明:连结OC、BC.∵OA=OC,∴∠A=∠1=∠300.∴∠BOC=∠A+∠1=600.又∵OC=OB,∴△OBC是等边三角形.∴OB=BC.∵OB=BD,∴OB=BC=BD.
∴DC是⊙O的切线.说明:此题是根据圆周角定理的推论3证明垂直的,此题解法颇多,但这种方法较好.例5如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP.求证:PC是⊙O的切线.证明:连结OC∵OA2=OD·OP,OA=OC,∴OC2=OD·OP,OCOP.ODOC.又∵∠1=∠1,∴△OCP∽△ODC.∴∠OCP=∠ODC.∵CD⊥AB,∴∠OCP=900∴PC是⊙O的切线.说明:此题是通过证三角形相似证明垂直的例6如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与△CFG的外接圆相切分析:此题图上没有画出△CFG的外接圆,但△CFG是直角三角形,圆心在斜边FG的中点,为此我们取FG的中点O,连结O可得解.C,证明CE⊥OC即证明:取FG中点O,连结OC.∵ABCD是正方形,∴BC⊥CD,△CFG是Rt△∵O是FG的中点,∴O是Rt△CFG的外心.∵OC=OG,∴∠3=∠G,∵AD∥BC,∴∠G=∠4.∵AD=CD,DE=DE,∠ADE=∠CDE=450,∴△ADE≌△CDE(SAS)∴∠4=∠1,∠1=∠3.∵∠2+∠3=900,∴∠1+∠2=900.即CE⊥OC.证明二:证明二:OA⊥二、若直线l与⊙O没有已知的公共点,又要证明l是⊙OOA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”例7如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.证明一:连结DE,作DF⊥AC,F是垂足.∵AB是⊙D的切线,∴DE⊥AB.∵DF⊥AC,∴∠DEB=∠DFC=900.∵AB=AC,∴∠B=∠C.又∵BD=CD,∴△BDE≌△CDF(AAS)∴DF=DE.∴F在⊙D上.∴AC是⊙D的切线连结DE,AD,作DF⊥AC,F是垂足.∵AB与⊙D相切,
∵AB=AC,BD=CD,∴∠1=∠2.∵DE⊥AB,DF⊥AC,∴DE=DF.∴F在⊙D上.∴AC与⊙D相切.说明:证明一是通过证明三角形全等证明DF=DE的,证明二是利用角平分线的性质证明DF=DE的,这类习题多数与角平分线有关.例8已知:如图,AC,BD与⊙O切于A、B,且AC∥BD,若∠COD=900.E为垂足.求证:CD是⊙OE为垂足.证明一:连结OA,OB,作OE⊥CD,∵AC,BD与⊙O相切,∴AC⊥OA,BD⊥OB.∵AC∥BD,∴∠1+∠2+∠3+∠4=1800.∵∠COD=900,∴∠2+∠3=900,∠1+∠4=900∵∠4+∠5=900.∴∠1=∠5.∴Rt△AOC∽Rt△BDO.∴ACOC∴OBOD.∵OA=OB,∴ACOC.∴OAOD.又∵∠CAO=∠COD=900,∴△AOC∽△ODC,∴∠1=∠2.又∵OA⊥AC,OE⊥CD,∴OE=OA.∴E点在⊙O上.∴CD是⊙O的切线.证明二:连结OA,OB,作OE⊥CD于E,延长DO交CA延长线于F.∵∵AC,BD与⊙O相切,∴AC⊥OA,BD⊥OB.∵AC∥BD,∴∠F=∠BDO.又∵OA=OB,∴△AOF≌△BOD(AAS)∵∠COD=900,∴CF=CD,∠1=∠2.又∵OA⊥AC,OE⊥CD,∴OE=OA.∴E点在⊙O上.∴CD是⊙O的切线.证明三:连结AO并延长,作OE⊥CD于E,取CD中点F,连结OF.∵AC与⊙O相切,∴AC⊥AO.∵AC∥BD,∴AO⊥BD.∵BD与⊙O相切于B,∴AO的延长线必经过点B.∴AB是⊙O的直径.∵AC∥BD,OA=OB,CF=DF,∴OF∥AC,∴∠1=∠COF.∵∠COD=900,CF=DF,1∴OF CDCF.2∴∠2=∠COF.∴∠1=∠2.∵OA⊥AC,OE⊥CD,∴OE=OA.∴E点在⊙O上.∴CD是⊙O的切线说明:证明一是利用相似三角形证明∠1=∠2,证明二是利用等腰三角形三线合一证明∠1=∠2.证明三是利用梯形的性质证明∠1=∠2,这种方法必需先证明A、O、B三点共线.此题较难,需要同学们利用所学过的知识综合求解.以上介绍的是证明圆的切线常用的两种方法供同学们参考.切线的性质定理:圆的切线垂直于经过切点的半径切线的性质定理的推论1:经过圆心且垂直于切线的直线必经过切点.切线的性质定理的推论2:经过切点且垂直于切线的直线必经过圆心切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点
和圆心的连线平分两条切线的夹角一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径.【例1】如图1,已知AB为⊙O的直径,点D在AB的延长线上,BD=OB,点C在圆上,∠CAB=30o.求证:DC是⊙O的切线.思路:要想证明DC是⊙O的切线,只要我们连接OC,证明∠OCD=90o即可.证明:连接OC,BC.∵AB为⊙O的直径,∴∠ACB=90o.1∵∠CAB=30o,∴BC=AB=OB.21∵BD=OB,∴BC=OD.∴∠OCD=90o.2∴DC是⊙O的切线.评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线.例2】如图2,已知AB为⊙O的直径,过点B作⊙O的切线BC,连接OC,弦AD∥OC.求证:CD是⊙O的切线.思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明CD是⊙O的切线,只要证明∠ODC=90o即可.证明:连接OD.∵OC∥AD,∴∠1=∠3,∠2=∠4.∵OA=OD,∴∠1=∠2.∴∠3=∠4.又∵OB=OD,OC=OC,∴△OBC≌△ODC.∴∠OBC=∠ODC.∵BC是⊙O的切线,∴∠OBC=90o.∴∠ODC=90o.∴DC是⊙O的切线.【例3】如图2,已知AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.求证:AC平分∠DAB.思路:利用圆的切线的性质——与圆的切线垂直于过切点的半径.图3证明:连接OC图3∵CD是⊙O的切线,∴OC⊥CD.∵AD⊥CD,∴OC∥AD.∴∠1=∠2.∵OC=OA,∴∠1=∠3.∴∠2=∠3.∴AC平分∠DAB.
评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直切线.【例4】如图1,B、C是⊙O上的点,线段AB经过圆心O,连接AC、BC,过点C作CD⊥AB于D,∠ACD=2∠B.AC是⊙O的切线吗?为什么?解:AC是⊙O的切线.理由:连接OC,∵OC=OB,∴∠OCB=∠B.∵∠COD是△BOC的外角,∴∠COD=∠OCB+∠B=2∠B.∵∠ACD=2∠B,∴∠ACD=∠COD.∵CD⊥AB于D,∴∠DCO+∠COD=90∴∠DCO+∠ACD=90即OC⊥AC.∵C为⊙O上的点,
∴AC是⊙O的切线.例5】如图2,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上的一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.求证:DE是⊙O的切线.证明:连接OC,则OA=OC,∴∠CAO=∠ACO,∵AC平分∠EAB,∴∠EAC=∠CAO=∠ACO,∴AE∥CO,又AE⊥DE,∴CO⊥DE,∴DE是⊙O的切线.二、直线与圆的公共点未知时须通过圆心作已知直线的垂直线段,证明此垂线段的长等于半径例6】如图3,AB=AC,OB=OC,⊙O与AB边相切于点D.证明:连接OD,作OE⊥AC,垂足为E.∵AB=AC,OB=OC.∴AO为∠BAC角平分线,∠DAO=∠EAO∵⊙O与AB相切于点D,∴∠BDO=∠CEO=90°.∵AO=AO∴△ADO≌△AEO,所以OE=OD.∵OD是⊙O的半径,∴OE是⊙O的半径.∴⊙O与AC边相切.【例7】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.证明:连结OE,AD.∵AB是⊙O的直径,∴AD⊥BC.又∵AB=BC,∴∠3=∠4.⌒⌒∴BD=DE,∠1=∠2.∴△BOF≌△EOF(SAS).∴∠OBF=∠OEF.∵BF与⊙O相切,∴OB⊥BF.∴∠OEF=900.∴EF与⊙O相切.说明:此题是通过证明三角形全等证明垂直的例8】如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD.求证:PA与⊙O相切.证明一:作直径AE,连结EC.∴∠2=∠1+∠DAC.∵AD是∠BAC∴∠2=∠1+∠DAC.∵PA=PD,∵∠2=∠B+∠DAB,∴∠1=∠B.又∵∠B=∠E, ∴∠1=∠E∵AE是⊙O的直径,∴AC⊥EC,∠E+∠EAC=900.∴∠1+∠EAC=900.即OA⊥PA.∴PA与⊙O相切.
证明二:延长AD交⊙O于E,连结OA,OE.∵⌒AD⌒是∠BAC的平分线,∴BE=CE,∴OE⊥BC.∴∠E+∠BDE=900.∵OA=OE,∴∠E=∠1.∵PA=PD,∴∠PAD=∠PDA.又∵∠PDA=∠BDE,∴∠1+∠PAD=900即OA⊥PA.∴PA与⊙O相切说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用.【例9】如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于求证:DM与⊙O相切.证明一:连结OD.
∵AB=AC,∴∠B=∠C.∵OB=OD,∴∠1=∠B.∴∠1=∠C.∴OD∥AC.∵DM⊥AC,∴DM⊥OD.∴DM与⊙O相切证明二:连结OD,AD.∵AB是⊙O的直径,∴AD⊥BC.又∵AB=AC,∴∠1=∠2.∵DM⊥AC,∴∠2+∠4=900∵OA=OD,∴∠1=∠3.∴∠3+∠4=900
即OD⊥DM.∴DM是⊙O的切线说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,解题中注意充分利用已知及图上已知.【例10】如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.求证:DC是⊙O的切线证明:连结OC、BC.∵OA=OC,∴∠A=∠1=∠300.∴∠BOC=∠A+∠1=600又∵OC=OB,∴△OBC是等边三角形.∴OB=BC.∵OB=BD,∴OB=BC=BD.∴OC⊥CD.∴DC是⊙O的切线.说明:此题解法颇多,但这种方法较好
例12】如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP.求证:PC是⊙O的切线.证明:连结OC∵OA2=OD·OP,OA=OC,∴OC2=OD·OP,OCOP.ODOC.又∵∠1=∠1,∴△OCP∽△ODC.∴∠OCP=∠ODC.∵CD⊥AB,∴∠OCP=900.∴PC是⊙O的切线.说明:此题是通过证三角形相似证明垂直的【例13】如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与△CFG的外接圆相切.分析:此题图上没有画出△CFG的外接圆,但△CFG是直角三角形,圆心在斜边FG的中点,为此我们取FG的中点O,连结OC,证明CE⊥OC即可得解.
证明:取FG中点O,连结OC.∵ABCD是正方形,∴BC⊥CD,△CFG是Rt△∵O是FG的中点,∴O是Rt△CFG的外心.∵OC=OG,∴∠3=∠G,∵AD∥BC,∴∠G=∠4.∵AD=CD,DE=DE,∠ADE=∠CDE=450,∴△ADE≌△CDE(SAS)∴∠4=∠1,∠1=∠3.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025大学食堂承包合同范本
- 工业生产车间钢结构楼梯施工协议
- 企业国际化发展战
- 住宅小区批荡施工合同
- 餐饮业授权经营的管理办法
- 投标联合体合规协议
- 会计审计合同管理规则
- 零售连锁公司广告牌安装施工合同
- 医疗技术合作保险
- 2024年特种用途树木研发与销售合同范本3篇
- 浙江大学医学院附属儿童医院招聘人员真题
- 2024年江苏省苏州市中考数学试卷含答案
- 软件测试汇报
- 吉林省长春市第一〇八学校2024-2025学年七年级上学期期中历史试题
- 2024年世界职业院校技能大赛高职组“市政管线(道)数字化施工组”赛项考试题库
- 初中《孙中山诞辰纪念日》主题班会
- 5.5 跨学科实践:制作望远镜教学设计八年级物理上册(人教版2024)
- 屠呦呦课件教学课件
- 阿斯伯格综合症自测题汇博教育员工自测题含答案
- 护理肝癌的疑难病例讨论
- 天津市2023-2024学年七年级上学期语文期末试卷(含答案)
评论
0/150
提交评论