版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年河南省洛阳市中考数学模拟试卷一、选择题(每小题3分,共24分)1.(3分)(2023•洛阳模拟)在:﹣1,0,2,四个数中,最大的数是()A.﹣1 B.0 C.2 D.2.(3分)(2023•洛阳模拟)如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A. B. C. D.3.(3分)(2023•莱芜)大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为()A.1.42×105 B.1.42×104 C.142×103 D.0.142×1064.(3分)(2023•洛阳模拟)如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE5.(3分)(2023•洛阳模拟)下列计算正确的是()A.a3÷a2=a B.(﹣2a2)3=8a6 C.2a2+a2=3a4 D.(a﹣b)2=a2﹣b26.(3分)(2023•洛阳模拟)在下列调查中,适宜采用普查方式的是()A.了解全国中学生的视力情况B.了解九(1)班学生鞋子的尺码情况C.监测一批电灯泡的使用寿命D.了解郑州电视台《郑州大民生》栏目的收视率7.(3分)(2023•新疆)抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(1,2)8.(3分)(2023•洛阳模拟)已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时.△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或7二、填空题(每小题3分,共21分)9.(3分)(2023•岳阳)计算:|﹣2|=.10.(3分)(2023•洛阳模拟)已知a、b、c、d是成比例线段,即=,其中a=3cm,b=2cm,c=6cm,则线段d=.11.(3分)(2023•洛阳模拟)有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.12.(3分)(2023•黔西南州)如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=.13.(3分)(2023•烟台)如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.14.(3分)(2023•洛阳模拟)圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40°,∠F=60°,求∠A=°.15.(3分)(2023•洛阳模拟)如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.三、解答题(本题共8小题,共75分)16.(8分)(2023•洛阳模拟)先化简,再求值:(x﹣1﹣)÷,其中x是方程x2+2x=0的解.17.(9分)(2023•洛阳模拟)如图,在⊙O中,AC与BD是圆的直径,BE⊥AC,CF⊥BD,垂足分别为E、F(1)四边形ABCD是什么特殊的四边形?请判断并说明理由;(2)求证:BE=CF.18.(9分)(2023•洛阳模拟)为了了解学生关注热点新闻的情况,郑州“上合会议”期间,小明对班级同学一周内收看“上合会议”新闻次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列问题:(1)该班级女生人数是人,女生收看“上合会议”新闻次数的中位数是次,平均数是次;(2)对于某个性别群体,我们把一周内收看热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“上合会议”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“上合会议”新闻次数的特点,小明相比较该班级男、女生收看“上合会议”新闻次数的离散程度,那么小明要关注的统计量是.19.(9分)(2023•洛阳模拟)已知关于x的方程x2﹣2(m+1)x+m2=0(1)当m取什么值时,原方程没有实数根;(2)对m选取一个合适的非零整数,使原方程有两个不相等的实数根,并求出这两个实数根.20.(9分)(2023•洛阳模拟)两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)(2)设AB的垂直平分线交ME于点N,且MN=2(+1)km,测得∠CMN=30°,∠CNM=45°,求点C到公路ME的距离.21.(10分)(2023•抚顺)一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)…50607080…销售量y(千克)…100908070…(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?22.(10分)(2023•洛阳模拟)(1)【问题发现】小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.小明发现,过点D作DF∥AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系:;(2)【类比探究】如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论.(3)【拓展应用】当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.23.(11分)(2023•洛阳模拟)如图,二次函数y=x2+bx+c的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.(1)求二次函数的解析式;(2)如图1,当△BPQ为直角三角形时,求t的值;(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上存在一点N,使得PQ的中点恰为MN的中点,请直接写出N点的坐标.2023年河南省洛阳市中考数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)(2023•洛阳模拟)在:﹣1,0,2,四个数中,最大的数是()A.﹣1 B.0 C.2 D.【解答】解:根据实数比较大小的方法,可得﹣1<0<<2,∴在:﹣1,0,2,四个数中,最大的数是2.故选:C.2.(3分)(2023•洛阳模拟)如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A. B. C. D.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.3.(3分)(2023•莱芜)大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为()A.1.42×105 B.1.42×104 C.142×103 D.0.142×106【解答】解:14.2万=142000=1.42×105.故选:A.4.(3分)(2023•洛阳模拟)如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE【解答】解:A、两个角不是同位角、也不是内错角,故选项错误;B、两个角不是同位角、也不是内错角,故选项错误;C、不是EC和AB形成的同位角、也不是内错角,故选项错误;D、正确.故选D.5.(3分)(2023•洛阳模拟)下列计算正确的是()A.a3÷a2=a B.(﹣2a2)3=8a6 C.2a2+a2=3a4 D.(a﹣b)2=a2﹣b2【解答】解:A、同底数幂的除法底数不变指数相减,故A正确;B、积的乘方等于乘方的积,故B错误;C、合并同类项系数相加字母及指数不变,故C错误;D、差的平方等于平方和减积的二倍,故D错误;故选:A.6.(3分)(2023•洛阳模拟)在下列调查中,适宜采用普查方式的是()A.了解全国中学生的视力情况B.了解九(1)班学生鞋子的尺码情况C.监测一批电灯泡的使用寿命D.了解郑州电视台《郑州大民生》栏目的收视率【解答】解:A、了解全国中学生的视力情况,人数众多,适合抽样调查,故此选项错误;B、了解九(1)班学生鞋子的尺码情况,人数不多,适于全面调查,故此选项正确;C、监测一批电灯泡的使用寿命,利用普查具有破坏性,适合抽样调查,故此选项错误;D、了解郑州电视台《郑州大民生》栏目的收视率,人数众多,意义不大,适合抽样调查,故此选项错误;故选:B.7.(3分)(2023•新疆)抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(1,2)【解答】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴抛物线y=(x﹣1)2+2的顶点坐标是(1,2).故选D.8.(3分)(2023•洛阳模拟)已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时.△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【解答】解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16﹣2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故选C.二、填空题(每小题3分,共21分)9.(3分)(2023•岳阳)计算:|﹣2|=2.【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.10.(3分)(2023•洛阳模拟)已知a、b、c、d是成比例线段,即=,其中a=3cm,b=2cm,c=6cm,则线段d=4cm.【解答】解:∵=,其中a=3cm,b=2cm,c=6cm,∴=,解得:d=4cm.故答案为:4cm.11.(3分)(2023•洛阳模拟)有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.【解答】解:画树状图为:共有6种等可能的结果数,其中这两个球上的数字之和为偶数的结果数为2,所以这两个球上的数字之和为偶数的概率==.故答案为.12.(3分)(2023•黔西南州)如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=﹣4.【解答】解:由题意得:S矩形ABOC=|k|=4,又双曲线位于第二、四象限,则k=﹣4,故答案为:﹣4.13.(3分)(2023•烟台)如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是x<4.【解答】解:把P(4,﹣6)代入y=2x+b得,﹣6=2×4+b解得,b=﹣14把P(4,﹣6)代入y=kx﹣3解得,k=﹣把b=﹣14,k=﹣代入kx﹣3>2x+b得,﹣x﹣3>2x﹣14解得,x<4.故答案为:x<4.14.(3分)(2023•洛阳模拟)圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40°,∠F=60°,求∠A=40°.【解答】解:∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣∠A,∵∠CBF=∠A+∠E,∠DCB=∠CBF+∠F,∴180°﹣∠A=∠A+∠E+∠F,即180°﹣∠A=∠A+40°+60°,解得∠A=40°.故答案为:40.15.(3分)(2023•洛阳模拟)如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE=,∴DF=EF﹣ED=,∴B′F=.故答案为:.三、解答题(本题共8小题,共75分)16.(8分)(2023•洛阳模拟)先化简,再求值:(x﹣1﹣)÷,其中x是方程x2+2x=0的解.【解答】解:原式=•=•=,解方程x2+2x=0得:x1=﹣2,x2=0,由题意得:x≠﹣2,所以x=0.把x=0代入=,原式==﹣1.17.(9分)(2023•洛阳模拟)如图,在⊙O中,AC与BD是圆的直径,BE⊥AC,CF⊥BD,垂足分别为E、F(1)四边形ABCD是什么特殊的四边形?请判断并说明理由;(2)求证:BE=CF.【解答】(1)解:四边形ABCD是矩形.理由如下:∵AC与BD是圆的直径,∴∠ABC=∠ADC=90°,∠BAD=∠BCD=90°,∴四边形ABCD是矩形;(2)证明:∵BO=CO,又∵BE⊥AC于E,CF⊥BD于F,∴∠BEO=∠CFO=90°.在△BOE和△COF中,,∴△BOE≌△COF(AAS).∴BE=CF.18.(9分)(2023•洛阳模拟)为了了解学生关注热点新闻的情况,郑州“上合会议”期间,小明对班级同学一周内收看“上合会议”新闻次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列问题:(1)该班级女生人数是20人,女生收看“上合会议”新闻次数的中位数是3次,平均数是3次;(2)对于某个性别群体,我们把一周内收看热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“上合会议”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“上合会议”新闻次数的特点,小明相比较该班级男、女生收看“上合会议”新闻次数的离散程度,那么小明要关注的统计量是方差.【解答】解:(1)20,3,3;(2)由题意知:该班女生对新闻的“关注指数”为65%,所以,男生对新闻的“关注指数”为60%.设该班的男生有x人.则=60%,解得:x=25.经检验x=25是原方程的解.答:该班级男生有25人;(3)小明相比较该班级男、女生收看“上合会议”新闻次数的离散程度,那么小明要关注的统计量是方差.故答案为20,3,3;方差.19.(9分)(2023•洛阳模拟)已知关于x的方程x2﹣2(m+1)x+m2=0(1)当m取什么值时,原方程没有实数根;(2)对m选取一个合适的非零整数,使原方程有两个不相等的实数根,并求出这两个实数根.【解答】解:(1)∵方程没有实数根,∴b2﹣4ac=[﹣2(m+1)]2﹣4m2=8m+4<0,∴m<﹣,∴当m<﹣时,原方程没有实数根;(2)由(1)可知,当m≥﹣时,方程有实数根,当m=1时,原方程变为x2﹣4x+1=0,设此时方程的两根分别为x1,x2,解得x1=2+,x2=2﹣.20.(9分)(2023•洛阳模拟)两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)(2)设AB的垂直平分线交ME于点N,且MN=2(+1)km,测得∠CMN=30°,∠CNM=45°,求点C到公路ME的距离.【解答】解:(1)答图如图1所示:点C即为所求;(2)作CD⊥MN于点D.如图2所示:∵在Rt△CMD中,∠CMN=30°,∴=tan∠CMN,∴MD===CD,∵在Rt△CND中,∠CNM=45°,=tan∠CNM,∴DN==CD,∵MN=2(+1)km,∴MN=MD+DN=CD+CD=2(+1)km.解得:CD=2km.答:点C到公路ME的距离为2km.21.(10分)(2023•抚顺)一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)…50607080…销售量y(千克)…100908070…(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?【解答】解:(1)设y与x的函数关系式为y=kx+b(k≠0),根据题意得,解得.故y与x的函数关系式为y=﹣x+150;(2)根据题意得(﹣x+150)(x﹣20)=4000,解得x1=70,x2=100>90(不合题意,舍去).故该批发商若想获得4000元的利润,应将售价定为70元;(3)w与x的函数关系式为:w=(﹣x+150)(x﹣20)=﹣x2+170x﹣3000=﹣(x﹣85)2+4225,∵﹣1<0,∴当x=85时,w值最大,w最大值是4225.∴该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为4225元.22.(10分)(2023•洛阳模拟)(1)【问题发现】小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.小明发现,过点D作DF∥AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系:AD=DE;(2)【类比探究】如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论.(3)【拓展应用】当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.【解答】(1)证明:∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°.又∵DF∥AC,∴∠BDF=∠BFD=60°,∴△BDF是等边三角形,∴DF=BD,∠BFD=60°,∵BD=CD,∴DF=CD∴∠AFD=120°.∵EC是外角的平分线,∠DCE=120°=∠AFD,∵∠ADB=∠ADC=90°,∴∠ADF=∠ECD=30°,在△AFD与△EDC中,,∴△AFD≌△DCE(ASA),∴AD=DE;(2)AD=DE;证明:如图2,过点D作DF∥AC,交AC于点F,∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°,又∵DF∥AC,∴∠BDF=∠BFD=60°,∴△BDF是等边三角形,BF=BD,∠BFD=60°,∴AF=CD,∠AFD=120°,∵EC是外角的平分线,∠DCE=120°=∠AFD,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠FAD=60°+∠FAD,∵∠ADC=∠ADE+∠EDC=60°+∠EDC,∴∠ADF=∠EDC,在△AFD≌△DCE中,,∴△AFD≌△DCE(ASA),∴AD=DE;(3)解:∵BC=CD,∴AC=CD,∵CE平分∠ACD,∴CE垂直平分AD,∴AE=DE,∵∠ADE=60°,∴△ADE是等边三角形,∴△ABC∽△ADE,在Rt△CDO中,,∴,∴,∴==.23.(11分)(2023•洛阳模拟)如图,二次函数y=x2+bx+c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年冀教版四年级语文上册月考试卷含答案
- 二零二五年度农产品出口质量安全合同范本3篇
- 专项三方资金借贷合同2024版一
- 2025年度项目经理部劳动合同范本(含竞业禁止条款)3篇
- 二零二五版U8+合同管理智能合同归档与检索合同3篇
- 2025年华东师大版九年级科学上册月考试卷
- 2025年度网络数据备份与恢复合同2篇
- 世纪新能源汽车研发与制造合同(04版)
- 2025年仁爱科普版八年级地理下册阶段测试试卷
- 2025年人教版九年级地理上册月考试卷含答案
- 2025年河北省职业院校技能大赛智能节水系统设计与安装(高职组)考试题库(含答案)
- 2024年下半年鄂州市城市发展投资控股集团限公司社会招聘【27人】易考易错模拟试题(共500题)试卷后附参考答案
- GB/T 29498-2024木门窗通用技术要求
- 《职业院校与本科高校对口贯通分段培养协议书》
- 人教版(2024)英语七年级上册单词表
- 中医养生产业现状及发展趋势分析
- 2023年浙江省温州市中考数学真题含解析
- 司库体系建设
- 居间合同范本解
- 机电传动单向数控平台-矿大-机械电子-有图
- 妇科病盆腔炎病例讨论
评论
0/150
提交评论