化工热力学版第四章习题答案_第1页
化工热力学版第四章习题答案_第2页
化工热力学版第四章习题答案_第3页
化工热力学版第四章习题答案_第4页
化工热力学版第四章习题答案_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本文格式为Word版,下载可任意编辑——化工热力学版第四章习题答案4-11解:(1)已知H?300x1?450x2?x1x2(25x1?10x2)(A)由于x1?1?x2故H?300x1?450x2?x1x2(25x1?10x2)

?300x1?450(1?x1)?x1(1?x1)[25x1?10(1?x1)]

23?450?140x1?5x1(B)?15x1根据H?H?(1?x1)(?H)T?P?x1H2?H?x1(?H)T?P?x1其中

(?H)T.P??140?10x1?45x12?x123则:H1?450?140x1?5x1?15x1?(1?x1)(?140?10x1?45x12)23?310?10x1?50x1(C)?30x1H2?450?140x1?5x1?15x1?x1(?140?10x1?45x1)?450?5x1?30x1(D)(2)将x1?1及x1?0分别代入式(B),得纯组元的焓H,和H2H1?300J?molH2?450J?mol

(3)H1和H2是指在x1?0及x1?1时的H1和H2的极限值。将x1?0代入式(C)中得H1?310J?mol将x1?1代入式(D)中得H2?475J?mol4-13解:根据摩尔性质与偏摩尔性质间的关系得M1?M?(1?x1)????23232dMdx1M2?M?x1当M?V时

dMdx1V1?V?(1?x1)dMdx1V2?V?x1dMdx12已知V?109.4?16.8x1?2.64x1

dVdV代入V1和V2的表达式中??16.8?5.28x1将V及

dx1dx12得V1?92.6?5.28x1?2.64x1(A)2V2?109.4?2.64x1(B)

由式(A)由式(B)由于?V?当x1?1时,得V1?89.96当x1?0时,得V2?109.4

?x(V?V)

iii22所以?V?x1(V1?V1)?x2(V2?V2)

?x1(92.6?5.28x1?2.64x1?89.96)?(1?x1)(109.4?2.64x1?109.4)?2.64x1?5.28x1?2.64x1?2.64x1?2.64x1?2.64x1?2.64x1?2.64x1(1?x1)?2.64x1x24-14解:根据Gibbs-Duhem方程

22323?(xidMi)T,P?0

得恒温恒压下x1dM1?x2dM2?0

或x1dM1dM2dM2??x2?x2dx1dx1x2dH1dH2??x2dx1dx1当Mi?Hi时,得x12已知H1?a1?b1x22H2?a2?b2x1

dH1??2b1?2b1x1dx1dH2?2b2x1dx1

x1dH1??2b1x1?2b1x12?2b1x1(x1?1)??2b1x1x2dx1dH2??2b2x2x1dx1dH1dH2??x2dx1dx1?x2只有当b1?b2时x1结论得证。

4-15,试计算在25℃下,由22.5kgH2SO4与90kg50%(百分数)H2SO4水溶液进行混合时的

热效应。

解:90kg50%的H2SO4水溶液中有:H2SO445kg,H2O45kg混合后溶液中有:H2SO422.5?45?67.5kg

H2O

45kg共计112.5kg混合后H2SO4的浓度为

67.5?100%?60%112.5由此利用有关的H2SO4—H2O的焓浓图可进行计算。根据直线规则,将代表25℃50%H2SO4的直线交点可读出t=60℃,该温度即为绝热混合之终温,其相应的焓值为—195kJ/kg查得25℃60%溶液的焓值为—275kJ/kg

kJ则Q?m??H?112.5?(?275?195)??90004-17,试用适合的状态方程求正丁烷在460K,1.5?10Pa时的逸度与逸度系数。解:查附录三得:Tc?425.12KPc?3.796MPaw?0.199

64601.5?106?1.082Pr??0.395Tr?6428.153.796?10查图2-11,Tr、Pr点落在图2-11分界限上方,故适用于普遍化其次维里系数关联式。由式(2-30)得B(0)?0.083?B据式(4-86)ln?i?则ln?i?

(1)0.422??0.2891.61.0820.172?0.139??0.015

1.0821.6Pr(0)[B?wB(1)]Tr0.395?(?0.289?0.199?0.015)??0.10441.082?i?0.9009

fi?P?i?0.9009?1.5?106?1.351?106Pa4-18,试估算1-丁烯蒸气在478K、6.88?10Pa时的逸度。

解:查附录三得1-丁烯的临界参数Tc?419w?0.187.5KPc?4.02MPa则对比温度对比压力为Tr?6T478P6.88MPaPr???1.139??1.711

Tc41.95Pc4.02MPa参照图2-11普遍化关系适用范围图,Tr、Pr点落在分界限下方,适用于普遍化图查图4-3~4-6得:据ln?i?ln?i(0)?i(0)?0.700?i(1)?1.091

?wln?i(1)

ln?i?ln0.700?0.187ln1.091??0.3405

?i?0.7114

66fi?P?i?6.88?10?0.7114?4.894?10Pa

4-19,在25℃、20atm条件下,由组元1和组元2组成的二元液体混合物中,组元1的逸

?度f1由下式给出

?23f1?50x1?80x1?40x1式中,x1是组元1的摩尔分数,f1的单位为atm。在上述T和P下,试计算:

(1)纯组元1的逸度f1;(2)纯组元1的逸度系数;(3)组元1的亨利常数H1;

(4)作为x1函数的活度系数r1的表达式(组元1以Lewis—Randall规则为标准

态)。

??23解:在25℃、20atm,f1?50x1?80x1?40x1(1)在给定的温度压力下,当x1?1时f1?10atm(2)根据定义?1?f110??0.5P20??ff50x1?80x12?40x13ii(3)根据lim?Hi得Hi?lim?lim?50atm

x1?0xx1?0xi?0xx1i23?50x?80x?40xf111(4)?r1?1?r1??5?80x1?40x12

x1(10)x1f14-20某类气体的容量性质由下式表示P?RT。式中,b只是组元的函数。对于V?b混合物b??yibi,式中,bi是纯组元i的常数。试导出这类气体下述性质的表达式:

?(1)ln?i;(2)lnfi;(3)ln?i解:P??。;(4)lnfiRTRTbP或V?b?或Z?1?V?bPRTdPP(1)混合物的逸度系数公式可写为ln???0(Z?1)

PdPbPPbP???ln???0RTPRT

对纯组元i,ln?i?biPRT(2)?fi??iP,lnfi?ln?i?lnP?lnfi?biP?lnPRTP???(Z?1)(3)根据ln?i0?Zi?[dPPP?(yibi)P?(nibi)?(nZi),nZ?n?]T,P,ni?j而Z?1?RTRT?nibiPRTbiPRT?Zi?1???因而ln?i??y??(4)因fiiiP

??biP?lny(iP)?lnfiRT4-21假使?1?G1?RTlnx1系在T、P不变时,二元溶液系统中组元1的化学位表达式,试证明?2?G2?RTlnx2是组元2的化学位表达式。G1和G2是在T和P的纯液体组元1和组元2的自由焓,而x1和x2是摩尔分数。解:根据Gibbs-Dubem方程,

x1d?1?x2d?2?0(T、P恒定)

即x1d?1d?d?d??x22?0或x11?x22?0dx1dx1dx1dx2x1d?1d?1dx2?dlnx2(T、P恒定)

x2dx1dln?1d?1?RT(T、P恒定)

dlnx1?d?2???1?G1?RTlnx1故

由x2?1(此时?2?G2)积分到任意组成x2,得

即4-22

?2?G2?RT(lnx2?ln1)

?2?G2?RTlnx2

P2??P(B?y212)(B11?y212)ln?2221RTRT??解:(1)?ln?1其中12?2B12?B11?B22??9.5?2?14?265?232cm3?mol?1

??N2:ln?17?106(14?0.72?232)?10?6?0.2332

8.3145?461??1.2626?167?10??(?265?0.32?232)?10?6??0.4458n?C4H10:ln?28.3145?461??0.6403?222B?y1B11?2y1y2B12?y2B22

B?0.32?14?2?0.3?0.7?9.5?0.72?265??132.58(cm3?mol?1)V?(2)ij112212

RT8.3145?461?6?63?1?B??132.58?10?414.99?10(m?mol)6P7?10Tcij(K)

126.10425.12231.53

Pcij(MPa)

3.3943.7963.438

Vcij(cm3?mol?1)Zcij

90.1255158.44

1/31/3Vci?Vcjbi?106

26.773

80.670

aij

1.553429.00957.0113

0.2920.2740.283

根据混合规则Tcij?TciTcj,Vcij?(2)3,Zcij?Zci?Zcj2,Pcij?ZcijRTcijVcij,

2.50.42748R2Tcij0.08664RTci及bi?,aij?

PcijPci得到表上数据。

对二元物系,a?y1a11?2y1y2a12?y2a22

22?0.3?1.5534?2?0.3?0.7?7.0113?0.7?29.0095?17.2992(Pa?K0.5?m6)

22b?y1b1?y2b2?(0.3?26.763?0.7?80.670)?10?6?64.4979?10?6(m3)

求Z,V

1ah?()1?hbRT1.51?hbPh?

ZRT据Z?代入数据,得:Z?117.299h1h?()??3.259()1?h64.4979?10?6?8.3145?4611.51?h1?h1?h64.4979?10?6?7?1060.118?h?

Z?8.314?5461Z迭代求解:设Z0?0.8?h0?0.1475?Z1?0.7541?h1?0.1565?

Z2?0.7439?h2?0.1586?Z3?0.7423?h3?0.1589?Z4?0.7421?Z?0.7421V?ZRT0.7421?8.3145?46163?1??406.35?10(m?mol)6P7?10

N2:??lnV?b1?2(y1a11?y2a12)lnV?b?ab1(lnV?b?b)?lnZ?0.2679ln?1V?bV?bVVV?bRT1.5bRT1.5b2??1.3073??14-23解:(1)根据

?i?yiPPisxiy1P0.634?24.4??2.2361s23.06?0.3P1x1y2P(1?y1)P(1?0.634)?24.4???1.2694P2sx2P2s(1?x1)10.05?(1?0.3)得:

?1?

?2?E(2)根据G?RT?xiln?i

得:G?8.3145?318(0.3ln2.2361?0.7ln1.2694)?1079.8(J?mol)

E?1?i根据?G?RT?xilna得:?G?RT?xiln(?ixi)?RT?x1ln(?1x1)?x2ln(?2x2)?

[o.3ln(2.2361?0.3)?0.7ln(1.2694?0.7)]?8.3145?318??535.3(J?mol?1)

(3)已知

?H?0.437RTHE?H?据RTRTHE?0.437R得T?(GE/T)HE0.437R]P.x??2???[?TTTGE0.437R)??dT(恒P,x)?d(TT将T1?318K,T2?333K,G1E?1079.8代入上式得

EG2G1ET1079.8333??0.437Rln2??0.437?8.3145lnT2T1T1318318?G2?1075.0(J?mol)

4-24解:两个公式在热力学上若正确,须满足恒T,P的G?D方程,即x1E?1dln?1dln?2?x2?0dx1dx1x1dln?1dln?2?x2?x1(b?a?2bx1)?x2(?b?a?2bx2)dx1dx122?a(x2?x1)?b(x2?x1)?2b(x2?x1)?(a?b)(x2?x1)?(a?b)(1?2x1)?0(a?b)

?这两个公式在热力学上不正确。

GE?Ax1x2,对组元14-25已知RT?(nGE/RT)又?ln?1?[]T,P,n2

?n1由于x1?n1n和x2?2

nnnGEAn1n2??RTn则ln?1?An2[?(n1/n)nn1n]n2?An2(?1)?A2(1?1)?n1nn2nn2或ln?1?Ax2(1?x1)?Ax22同理,对组元2,ln?2?Ax1

E图4-1所示为ln?1,ln?2和G/RT作为x1函数的关系图线,设图取A?1。标准

态的选择对两个组元都以Lewis-Randall规则为基准,这是一种很普通的选择法。超额Gibbs自由能在x1?0和x1?1两处都为零。两个活度系数符合下述必要条件lim?i?1。

xi?1?id?fx,而f?f(T,P)?常数,结论正确。4-26解:(1)理想溶液fiii(2)错。?vid?0,?uid?0,?Hid?0而?Gid?RT?xilnxi?0?Sid??R?xilnxi?0

(3)正确。ME??M??Mid对理想溶液ME??Mid??Mid?0

(4)错。P?0,limf?1P?0P234-27解:ln??y1y2(1?y2)?(1?y2)y2(1?y2)?(1?y2)y2?y2?y2

?是ln?的偏摩尔量,根据截距发公式得?ln?i??ln??yln?12dln?323?y2?y2?y2(1?3y2)?2y2dy2??e2y2?13

??yP???4ye1y2??f?f111113??ln??(1?y)同理ln?22dln?3223?y2?y2?(1?y2)(1?3y2)?1?3y2?2y2dy2323)(1?3y2?2y2)???e(1?3y22?2y2??f?4ye222??2.568ΜPαf??3.29M当y1?y2?0.5时:f7Pa124-28解:当汽—液两相平衡时,须满足

?v?f?lfii上标v和l分别指的是汽相和液相。

若汽相可视为理想气体,则系统的压力比较低,液相的标准态逸度fi??Pis,则

?Py??fx?Py??Psx?iiiiiiiii假使存在恒沸物,即yi?xi

?1P2s对二元物系来说,则有?s

?2P1?APBs8?104对此题?s??0.675?BPA1.2?10GE?0.5xAxB已知RT?(nGE/RT)2?ln?A?[]T.P.nB?0.5xB?nA

?A?e20.5xB

同理?B?e?0.5x2A?A?e0.5(x?BB?xA)?0.67

解得:xA?0.9056

0?xA?1,说明在353K时该系统有共沸物存在。4-29解:

(1)VanLaar方程ln?1?A12(A21x2A12x1)2,ln?2?A21()2

A12x1?A21x2A12x1?A21x2式中A12和A21由恒沸点的数据求得。在恒沸点,yi?xi??i?PyiP?ssPixiPi则?1?P101.3P101.3,??1.0191????1.04142ss99.4097.27P1P2A12?ln?1(1?x2ln?220.475ln1.04142)?ln1.0191(1?)?0.1635

x1ln?10.525ln1.0191x1ln?120.475ln1.01912)?ln1.0414(1?)?0.0932

x2ln?20.525ln1.0414A21?ln?2(1?全浓度范围内,苯和环己烷的活度系数为

20.0932x20.1635x22ln?1?0.1635()?20.1635x1?0.0932x2(1.7543x1?x2)0.1635x10.0932x122ln?2?0.0932()?20.1635x1?0.0932x2(x1?0.5700x2)(2)Statchard和Hildebrand方程

V1?89cm?mol,V2?109cm?mol

2V1?22109x20.461x7892222?ln?1?(?1??2)??()(18.82?14.93)?2RT8.3145?350.889x1?109x2(0.816x51?x2)2V2?1289x20.565x51092222?ln?2?(?1??2)??()(18.82?14.93)?2RT8.3145?350.889x1?109x2(x1?1.224x72)3?13?1?1?18.82(J0.5?cm?1.5),?2?14.93(J0.5?cm?1.5)?1?x1V189x1x2V2109x1,?2???x1V1?x2V289x1?109x2x1V1?x2V289x1?109x2在恒沸点,x1?0.525,x2?0.475

0.4617?0.4752?ln?1??0.1276?1?1.13612(0.8165?0.525?0.475)0.565?50.5225ln?2??1?1.1357?0.12732(0.525?51.224?70.47)5活度系数比(1)中计算偏大。

(3)当x1?0.8时,x2?0.2

0.1635?0.22用VanLaar方程:ln?1??0.002544?1?1.00252(1.7543?0.8?0.2)0.0932?0.82ln?2??0.07140?2?1.0740(0.8?0.5700?0.2)2y1??1P1sx1P?1.0025?99.40?0.8?0.79

101.3用Scatchard和Hildebrand方程:

0.4617?0.22ln?1??0.02537?1?1.02569

(0.8165?0.8?0.2)20.5655?0.82ln?2??0.3315?2?1.39302(0.8?1.2247?0.2)y1??1P1sx1P?1.02569?99.40?0.8?0.81

101.3

4-30解:根据Wilson方程ln?i?1?ln(??ijxj)??jk?kixk?kjxj将上式应用于三元系统,并将已知的各参数代入,即可求得该三元系统各组分的

活度系数:ln?1?1?ln(x1?x2?1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论