2021届云南、四川、贵州、西藏四名校高三第一次大联考试题数学理_第1页
2021届云南、四川、贵州、西藏四名校高三第一次大联考试题数学理_第2页
2021届云南、四川、贵州、西藏四名校高三第一次大联考试题数学理_第3页
2021届云南、四川、贵州、西藏四名校高三第一次大联考试题数学理_第4页
2021届云南、四川、贵州、西藏四名校高三第一次大联考试题数学理_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

绝密★启用前2021届云南、四川、贵州、西藏四省名校高三第一次大联考试题数学(理)本试卷共4页,23题(含选考题)。全卷满分150分。考试用时120分钟。第I卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。.设集合A={xlx2—X—2<0,*£^},集合B={xly=qlogp},则集合AAB等于A.1 B.[1,2) C.{1}D.{xlxN1}.已知复数z满足z(1—i)=2i,则复数z在复平面内对应的点所在象限为A.第一象限 B.第二象限 C.第三象限 D.第四象限.在长方形ABCD中,AB=2,AD=1,^M在边CD上运动,则MA•MB的最小值为A.—1 B.0 C.1D.<35.已知a£(0,C.3.15 D.3.16.祖冲之是中国南北朝时期著名的数学家以及天文学家,其最伟大的贡献是将圆周率精确到小数点之后的七位,比欧洲早了近千年。为探究圆周率的计算,数学兴趣小组采用以下模型,在正三角形中随机撒一把豆子,用随机模拟的方法估算圆周率兀的值。正三角形的边长为4,若总豆子数口=1000,其中落在圆内的豆子数m=618,则估算圆周率兀的值是(为方便计算,3取1.705.已知a£(0,C.3.15 D.3.16贝Usina=n)且满足cos(a— 贝Usina=4 4 182<2A.一2<2A.一2B.32C—31D.3.已知^ABC中,内角A,B,C的对边分别为a,b,c,若A=g,b=2,且^ABC的面积为,;3,则a的值为A.12 B.8 C.2<2 D.2\3X2V2 ..设双曲线C:a一瓦=l(a>。,b>0)的右焦点为F以OF为直径的圆交双曲线的一条渐近线于另一点A(O为坐标原点),且10八1=29加则双曲线C的离心率e为

D.2方形,则其表面积为A.8+4<2 B.12C.16+方形,则其表面积为A.8+4<2 B.12C.16+8J2 D.12+2<2.已知a=logs2,b=ln2,c=2,则a,b,c的大小关系正确的是5 3A.a>b>cB.a>c>bC.b>c>aD.c>b>a.众所周知,人类通常有4种血型:O、A、B、人8,又已知,4种血型O、A、B、AB的人数所占比分别为41%,28%,24%,7%,在临床上,某一血型的人能输血给什么血型的人,是有严格规定的,而这条输血法则是生物学的一大成就。这些规则可以归结为4条:①X—X;②O—X;③X—AB;④不满足上述3条法则的任何关系式都是错误的(X代表O、A、B、AB任一种血型)。按照规则,在不知道双方血型的情况下,一位供血者能为一位受血者正确输血的概率为A.0.5625 B.0.4375 C.0.4127 D.0.5873.已知实数x,y满足10g2x+e-y<log2y+e-x,则下列结论一定正确的是A.x>yB.ln|x—y|<0 C.ln|x—y+1|>0 D.ln|y—x+1|>0.已知点A是抛物线C:x2=2py(p>0)的对称轴与准线的交点,点F为抛物线的焦点,过A作抛物线的一条切线,切点为P,且满足|PA|=J2,则抛物线C的方程为A.x2=8y B.x2=4y C.x2=2y D.x2=y第II卷本卷包括必考题和选考题两部分。第13〜21题为必考题,每个试题考生都必须作答。第22〜23题为选考题,考生根据要求作答。二、填空题:本题共4小题,每小题5分。,2x+y-2>0.若x,y满足约束条件(x+y—2<0,则z=x—2y的最大值为。y>0

14.的展开式的中间一项为 .在等腰4ABC中,AB=AC=2,顶角为120°,以底边BC所在直线为轴旋转围成的封闭几何体内装有的展开式的中间一项为 一球,则球的最大体积为 .已知函数f(x)=sinxcos2x,关于函数y=f(x)有下列命题:兀②f(x)的图象关于点(不,0)对称;兀③f(x)是周期为n的奇函数; ④f(x)的图象关于直线x=一对称。2其中正确的有。(填写所有你认为正确命题的序号)三、解答题:解答应写出文字说明、证明过程或演算步骤。17.(本小题满分12分)已知数列{an}是公差为d的等差数列,且a】=2,a2是%,a4的等比中项。⑴求数列{an}的通项公式;一 - 1 —(2)当d>0时,求数列\ —\的前n项和T。a(n+1) ninJ.(本小题满分12分)西尼罗河病毒(WNV)是一种脑炎病毒,通常是由鸟类携带,经蚊子传播给人类。1999年8-10月,美国纽约首次爆发了WNV脑炎流行。在治疗上目前尚未有什么特效药可用,感染者需要采取输液及呼吸系统支持性疗法,有研究表明,大剂量的利巴韦林含片可抑制WNV的复制,抑制其对细胞的致病作用。现某药企加大了利巴韦林含片的生产,为了使生产效率提高,该药企负责人收集了5组实验数据,得到利巴韦林的投入量x(千克)和利巴韦林含片产量y(百盒)的统计数据如下:投入量千克)12345产3H百盒)202326由相关系数r可以反映两个变量相关性的强弱,|r|£[0.75,1],认为两个变量相关性很强;|r|£[0.3,0.75),认为两个变量相关性一般;|r|£[0,0.3),认为两个变量相关性较弱。⑴计算相关系数r,并判断变量x、y相关性强弱;(2)根据上表中的数据,建立y关于x的线性回归方程y=bx+a。为了使某组利巴韦林含片产量达到150百盒,估计该组应投入多少利巴韦林?参考数据:<660~\25.69。

参考公式:相关系数Z(%一%)(y参考公式:相关系数Z(%一%)(y一y)i i-i=4 Z(%-%)2i=1iZ(yi-y)2i=1线性回归方程y=bx+a中,Zb=-i=1(%一%)2

i,Zi=1(%—%)(y—y)=25。i=1.(本小题满分12分)1如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形,且AB=-AA1=1,E是棱AA1的中乙点,EC点,EC=\;3。(1)求证:平面D]EC,平面EDC;(2)求二面角D1-EC-B1的大小。20.(本小题满分12分)%2y2已知F1(-1,0),F2(1,0)是椭圆C:/+b^=1(。>b>0)的左、右焦点,点P是C的上顶点,且直线PF2的斜率为一<3。⑴求椭圆C的方程;(2)过点F2作两条互相垂直的直线lj12。若11与C交于A,B两点,12与C交于D,E两点,求|AB|十|DE|的取值范围。21.(本小题满分12分)已知函数f(x)=2x-Hklnxo%(1)当k=-3时,求f(x)的极值;k,(2)若存在xG[1,e],使得3x-f(x)<—一成立,求实数k的取值范围。%请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。22.(本小题满分10分)选修4—4:坐标系与参数方程。在直角坐标系xOy中,曲线D的参数方程为r—tNt为参数,t£R)。点A(—1,0),点B(1,0),

Iy=t-2曲线E上的任一点P满足PA-=1。以坐标原点为极点,x轴正半轴为极轴建立极坐标系。PB3⑴求曲线D的普通方程和曲线E的极坐标方程;(2)求点P到曲线D的距离的最大值。23.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=l3x—1l+l3x+al,g(x)=x,f(x),h(x)=x2—5x—3。⑴若f(x)三3恒成立,求实数a的取值范围; 一, a1 (2)是否存在这样的实数a(其中a>—1),使得Vx£[—3,3],都有不等式g(x)三h(x)恒成立?若存在,求出实数a的取值范围;若不存在,请说明理由。2021届四省名校高三第一次大联考理数参考答案及坪分细则一、选择组C【解析】由题得,八=:工|『8一,•一£«}"£国.b=:<:I: Ji=<1}„粒选CB【解析】因为:3一门=看"听以;=百券排3=—1+。即=在复平面内所对应的点为《一I 齐第二象限.版选民B【解析】如图.以井为原点MB为,袖"口为了轴.建立平面直角坐标系.启旧=£*同。=1.则AC0.6出谑,5,又/点在边<;0上,。第3.口内£1明汇一则亩1= 项=(2-.^--D,MA-MB=工'—2j+1=(.r——当工=1时,有最小皆Q-施选R■I.C1[第柝]由题就可得.5c=1k,内切圆的半工机工51$国里15,故选C.5.AI解析】皿(在一(*4■半)=(整如—一故选A.6.D[髀析]由逆可为/XAXrX血月=反即十>:丝Q="^"=]■,故『冬也选B.1 仃0 4 4.A工圈析】根据::觇图/「得:土体困带如图所示..C【解析】明知0<d<1-y<^<]$>",乂<二hcT-In/2—In-/>>c'>■'+c>«,被选C.10.DE解析】3当供血者值星为U型时.受血者为口.A、E3、AH均可,故概率巴=①』1,②当供血者血型为A型肘.嗫力身面型知4、A比植梨率肘-:.>XCQ.28I,07)-0.二B,的当供皮君血贵加H型时-受血丹配型为ILAEL故概率玲一爪hXI。,加+0,Q7)=n.口74九④当供血者也型为AEi型时.受血酉血取为A&敝慢率Pi=0.O7X0,07=(1,0049.也正确输耻的瞿率为F="+i\+B+巴=0.5S73.拉选D.IL-[)t解析】VItJgij+c~J<logjj+c-T,log:.1—e-J,构曲函数/(j)=lflg1x-e-J-(j->⑴,丁产hgr工与,=—L"=—(十)均在⑸+™)上单调避好.,/r.<)=]og;.r-e-Jft<0.+工0上单调递增…,,1■<了.即了一斤>。,:>—.r+1>1.二InIy-.r+1|>0.故选D..12.C【解析】据题意.点八(%一?),抛物绕准城方U2XrXy=#^'.r=Z.XJ+rs-ZfrccasA=tI4-8X(-4-)-32^\£j-2#.故选口一■Es工解析】由题点q打昉口/川甲=黑|=黑詈|LZ"i| £.|r|=4.渐近线方程为y=±T~r-:时■=[■■/=%=程为产一号.切缝斜率上一定存在,设过点A与抛物线相切的直绽方程为,=人一名.切点火门,[、,fF一由.yp1,由{ £得广-2*,T+力2=OtA=Lr£

I〃好一dy=D.解得4=±L当R=I时,其'一?pkx:+"=◎为=廿月守Hr=户,直绕方保为;》,=h 5,即kr=讣一等=与.,由——:£:(.Vr+4j=>得P=l,当*=一1时,同理济户=;I,他选C.二■,填空电B.21解析】由圈可知.过点《“⑴时工取最大依,则j*HlIK12・

解得4=口或4=工当(/=口时闻,=々当</=?时+弧=1+事#一口=?通《"由口)知,当4>。时m=?”.♦JL= =1f1__।间,1)2w(fl+1) £卜西«+1Cl分)(5分)ffi加出分}.丁1/, 1 Cl分)(5分)ffi加出分}]{.-4【解析】由题可断暖二眼展开式中共有?项,,

=—f1--J—}=―-- 112分)2v»+If2a+2, "l&斛:口万一!>aiI21-3+4i-5)-3c-yX<lfi十£0十羽十垢十£幻=驾. ”分)s£《心―5尸=口―3尸+3尸卜3】“I(4—r-J3)E-|-(5-3)fl-10.j中间项为第力厮.即-=生(整y(一房)’=15.^e解析】据题卷可得几何体的轴假面为边长为:E,一夷用为6。"的懿形•羞形中的网与谢羞尼内叨i时-球的体积最大,可得球的小径f='W-胜”':■M算考 |6(D④【解析】f(母卜小会小争=一条①正;确;/(今+J")—j^ill(与十1)ClfS{K+ ,=!一^03JTCQS21r才又J)=3in.l(—jt)oos(w—:匕)=一皿工匚口3—即/(^+.r) *I工②错作♦④正用"一G=sin<-Jrlmst—h1=j一而tcot2j 7<j),二尸3为奇函数,又f(,x+n)=&出(工+mJCOs(2j-+2ir)=一自由jCOsZjf丰\"Q■二③错设,故正欢的有优④.三、萧答鹿i7,^:m芯6是小曲的等比中项-,输।+d了=内5।+配).即(2+"冲=21£+£八:愕理得d--2d=f).

+C25-22)IH-(E6-E2>1=66.*TOC\o"1-5"\h\zX -y>喇「——r.-L-. --^=^0.97.1 《5分》所门,『与y.具有很强的相关性, (6^):

X《#r一一小下《门由门J海法==H =卜,=15〉5:(—J)1h=y—^=22-Z.5X5=H.5, 19分:所以乎非于工的线性回电方程为9=2一5x+U.5.CIO给当丁=150(百盒)时衣=54.£(千克£故要使梁朗利网韦林舍片产;母达到15口百优.估计诙组应投入54.2千克利巴韦林. 门£分,19.解:《I)因为点E是儿储的中点,所以AE-lt又且口=1.故在RkiEA口中,口E=/. H分)出她可如.疔「=6\1乂'=],则订小十艮叱,所以门ElfTL f£分)因为四楼住八现不一.\民「凸1是百四橙故FD_L平而显。口/一故CD±E/J|. (3加因为E口=\^2"<EUe iZ?jDi=Zt

所以L\E±ED.RCDnED=a所以口匕L平•面EC,.又REU平面DlEJ所以平面0|EC_L平面CDE,<5分)⑵由门)可用WLEK二口口网两互相垂直*册以点口为坐标原-曰,以R'W.JAL用在直式处别为几丁门轴建交空向直角坐稳系, K分下则IMUE,2:,.EU,。J》.门口.,⑴.国门门,门一所以^?=£一)川,门,荏=《-1.]--1>,前=(0.].1).俄平而口LEC的法向殳为H=■,iR*EL\=0-I—x+-=<l,则一一,n\rt-EC—0I—.t+;.—今J-I.明n-Cl,?+l), W分)设平面4ET的法向最为眼=Q5.「LI利•百子=。-r^+t='!),1m-EC—0 ।—a+&-r'=0.ft-I bi—(2-1--l>. 《10分i姐|.3m-心1==4■. ri分)因为二面猪为就用则二面布的大小为02分)iJ如.解:“)由强意加1=1- 门分,——=—^3,则以=再, (£外)足/=,■/+/,可得辞=> (3分7所以匚的方程为'?+:=l. E分)O当人,&其中一整的斜率不存在.其中--条的斜率为。时,曲条法长分别为为.竽.SM|AH|+〃E|=加十?== (5分1力H的斜率都存在时・设%,工=皿卅+11旧于⑺,,.1=m,+1,联立Z-化尚可得f3M443J卜6的3—9,彳十亍=」‘=/&>0恒成立中设Af工口.期)工Bf_r?.舞,+所以“+不=就:看5'=舟3. '7分'所以1,4阳=/+”IM一gIxTj:-a-//—6m\2।而_lB<^rI1>+^-H-y.,-4-(B分1同理可那IOEI-:等f• <9分,4用'rj所以IABI+|AEI=与丫上J+与Tt"=w十1」(V十占)(4IF

(3m'f4)(1j?i;t3)C10^)号/I1=t^<1.1,■=<=)-C10^)r f"产Ji/期总印十|田=叫后等就中=「产-■.(3^+1)(4r—1).根据十三0n得IM+IDEIe[华TOC\o"1-5"\h\z捺工-旧印十旧EI的取值范国品[牛.7J门£加1 q21.3S:口卜当上一一3时.『'l.T-£+2■一上一H X2j^—3ji+1_CZjt_1)(j—1) 1外* =P' 门力’Vj->0h当hE(aFy)HCl--CO)HJ./(.r)>0~当工W(y.1)uJ7r(j)<0.,网工)的递增区间为(0.J].{l,+sJ・.*公的递就区间为(9」), 心外1二门力的报大值为/(y)-3h2-Ltf51的极小但为『口下=1一 (5分)(白若三工£[1,打,使用打一/口〉七一}成交,<12<12分)*l+jt即3j—2.r+--iln』<一二0工十一方加,t<:*丁 x .r0行解・陵——Hn也只需独心在「建口上的;最小值小于3」。j1_IztA—卜 3+1)L*-a+i打「匕八、]■ft【JT】I5 4 i*Li/J-,.rJ- .t①当££Q时,&L—在口.打上单诩递增.1Mmi=jV-2<0,At<-2. 仃外)1②当1<a+10、即(X*O—1时在区间口+:4十]]二单周递项.在区间上卑词通培..,.JrC.rJ^=^(t+l)=^ll-l-Jtlii(.AHI.'=k+2\-'LnfET1)iV1<.A+1<CtJ.0drt<Jt+ i<k.二?”也一如nt."DAE,不满足茴意一 均分1j里当人|])小即土更匕一]时』u・,在[1.<0单调i

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论