![高考数学选择题方法速解七大方法巧解选择题_第1页](http://file4.renrendoc.com/view/5ba23638fb4e2ec48325ecc91e08bb9a/5ba23638fb4e2ec48325ecc91e08bb9a1.gif)
![高考数学选择题方法速解七大方法巧解选择题_第2页](http://file4.renrendoc.com/view/5ba23638fb4e2ec48325ecc91e08bb9a/5ba23638fb4e2ec48325ecc91e08bb9a2.gif)
![高考数学选择题方法速解七大方法巧解选择题_第3页](http://file4.renrendoc.com/view/5ba23638fb4e2ec48325ecc91e08bb9a/5ba23638fb4e2ec48325ecc91e08bb9a3.gif)
![高考数学选择题方法速解七大方法巧解选择题_第4页](http://file4.renrendoc.com/view/5ba23638fb4e2ec48325ecc91e08bb9a/5ba23638fb4e2ec48325ecc91e08bb9a4.gif)
![高考数学选择题方法速解七大方法巧解选择题_第5页](http://file4.renrendoc.com/view/5ba23638fb4e2ec48325ecc91e08bb9a/5ba23638fb4e2ec48325ecc91e08bb9a5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一讲选择题速解方法——七大方法巧解选择题题型解读题型地位选择题是高考数学试卷的三大题型之一.选择题的分数一般占全卷的40%左右.解选择题的快慢和成功率的高低对于能否进入做题的最佳状态以及整个考试的成败起着举足轻重的作用.如果选择题做得比较顺手,会使应试者自信心增强,有利于后续试题的解答.题型特点数学选择题属于客观性试题,是单项选择题,即给出的四个选项中只有一个是正确选项,且绝大部分数学选择题属于低中档题.一般按由易到难的顺序排列,主要的数学思想和数学方法能通过它得到充分的体现和应用,并且因为它还有相对难度(如思维层次、解题方法的优劣选择,解题速度的快慢等),所以选择题已成为具有较好区分度的基本题型之一.其主要体现在以下三个方面:(1)知识面广,切入点多,综合性较强;(2)概念性强,灵活性大,技巧性较强;(3)立意新颖,构思精巧,迷惑性较强.由于解选择题不要求表述得出结论的过程,只要求迅速、准确作出判断,因而选择题的解法有其独特的规律和技巧.因此,我们应熟练掌握选择题的解法,以“准确、迅速”为宗旨,绝不能“小题大做”.解题策略数学选择题的求解,一般有两条思路:一是从题干出发考虑,探求结果;二是从题干和选择支联合考虑或从选择支出发探求是否满足题干条件.其解法的基本思想有以下两点:(1)充分利用题干和选择支提供的信息,快速、准确地作出判断,是解选择题的基本策略.(2)既要看到通常各类常规题的解题思想,原则上都可以指导选择题的解答,更应看到,根据选择题的特殊性,必定存在着一些特殊的解决方法.其基本做法如下:①仔细审题,领悟题意;②抓住关键,全面分析;③仔细检查,认真核对.另外,从近几年高考试题的特点来看,选择题以认识型和思维型的题目为主,减少了繁琐的运算,着力考查逻辑思维与直觉思维能力,以及观察、分析、比较、选择简捷运算方法的能力,且许多题目既可用通性通法直接求解,也可用“特殊”方法求解.所以做选择题时最忌讳:(1)见到题就埋头运算,按着解答题的解题思路去求解,得到结果再去和选项对照,这样做花费时间较长,有时还可能得不到正确答案;(2)随意“蒙”一个答案.准确率只有25%!但经过筛选、淘汰,正确率就可以大幅度提高.总之,解选择题的基本策略是“不择手段”.例析方法一直接法直接对照型选择题是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,从而直接得出正确结论,然后对照题目所给出的选项“对号入座”,从而确定正确的选择支.这类选择题往往是由计算题、应用题或证明题改编而来,其基本求解策略是由因导果,直接求解.eq\o(\s\up7(),\s\do5(例1))已知{an}为等比数列,a4+a7=2,a5a6=-8,则a1+a10等于()A.7 B.5C.-5 D.-7思维启迪利用基本量和等比数列的性质,通过解方程求出a4,a7,继而求出q3.答案D解析解法一:由题意得eq\b\lc\{\rc\(\a\vs4\al\co1(a4+a7=a1q3+a1q6=2,,a5a6=a1q4·a1q5=a\o\al(2,1)q9=-8,))∴eq\b\lc\{\rc\(\a\vs4\al\co1(q3=-2,,a1=1))或eq\b\lc\{\rc\(\a\vs4\al\co1(q3=-\f(1,2),,a1=-8.))∴a1+a10=a1(1+q9)=-7.解法二:由eq\b\lc\{\rc\(\a\vs4\al\co1(a4+a7=2,,a5a6=a4a7=-8))解得eq\b\lc\{\rc\(\a\vs4\al\co1(a4=-2,,a7=4))或eq\b\lc\{\rc\(\a\vs4\al\co1(a4=4,,a7=-2.))∴eq\b\lc\{\rc\(\a\vs4\al\co1(q3=-2,,a1=1))或eq\b\lc\{\rc\(\a\vs4\al\co1(q3=-\f(1,2),,a1=-8.))∴a1+a10=a1(1+q9)=-7.探究提高直接法是解答选择题最常用的基本方法.直接法适用的范围很广,只要运算正确必能得出正确的答案.平时练习中应不断提高用直接法解选择题的能力,准确把握题目的特点.一般来说,涉及概念、性质的辨析或简单的运算题目多采用直接法.跟踪训练1[2015·浙江高考]如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A.eq\f(|BF|-1,|AF|-1) B.eq\f(|BF|2-1,|AF|2-1)C.eq\f(|BF|+1,|AF|+1) D.eq\f(|BF|2+1,|AF|2+1)答案A解析由题可知抛物线的准线方程为x=-1.如图所示,过A作AA2⊥y轴于点A2,过B作BB2⊥y轴于点B2,则eq\f(S△BCF,S△ACF)=eq\f(|BC|,|AC|)=eq\f(|BB2|,|AA2|)=eq\f(|BF|-1,|AF|-1).方法二概念辨析法概念辨析是从题设条件出发,通过对数学概念的辨析,进行少量运算或推理,直接选择出正确结论的方法.这类题目常涉及一些似是而非、很容易混淆的概念或性质,这需要平时注意辨析有关概念,准确区分相应概念的内涵与外延,同时在审题时要多加小心,准确审题以保证正确选择.一般说来,这类题目运算量小,侧重判断,下笔容易,但稍不留意则易误入命题者设置的“陷阱”.eq\o(\s\up7(),\s\do5(例2))已知非零向量a=(x1,y1),b=(x2,y2),给出下列条件,①a=kb(k∈R);②x1x2+y1y2=0;③(a+3b)∥(2a-b);④a·b=|a||b|;⑤xeq\o\al(2,1)yeq\o\al(2,2)+xeq\o\al(2,2)yeq\o\al(2,1)≤2x1x2y1y2.其中能够使得a∥b的个数是()A.1 B.2C.3 D.4思维启迪本题考查两个向量共线的定义,可根据两向量共线的条件来判断,注意零向量的特殊性.答案D解析显然①是正确的,这是共线向量的基本定理;②是错误的,这是两个向量垂直的条件;③是正确的,因为由(a+3b)∥(2a-b),可得(a+3b)=λ(2a-b),当λ≠eq\f(1,2)时,整理得a=eq\f(λ+3,2λ-1)b,故a∥b;当λ=eq\f(1,2)时,易知b=0,a∥b;④是正确的,若设两个向量的夹角为θ,则由a·b=|a||b|cosθ,可知cosθ=1,从而θ=0,所以a∥b;⑤是正确的,由xeq\o\al(2,1)yeq\o\al(2,2)+xeq\o\al(2,2)yeq\o\al(2,1)≤2x1x2y1y2,可得(x1y2-x2y1)2≤0,从而x1y2-x2y1=0,于是a∥b.探究提高平行向量共线向量是一个非常重要和有用的概念,应熟练掌握共线向量的定义以及判断方法,同时要将共线向量与向量中的其他知识例如向量的数量积、向量的模以及夹角等有机地联系起来,能够从不同的角度来理解共线向量.跟踪训练2设a,b,c是空间任意的非零向量,且相互不共线,则以下命题中:①(a·b)·c-(c·a)·b=0;②|a|+|b|>|a-b|;③若存在唯一实数组λ,μ,γ,使γc=λa+μb,则a,b,c共面;④|a+b|·|c|=|a·c+b·c|.真命题的个数是()A.0 B.1C.2 D.3答案B解析由向量数量积运算不满足结合律可知①错误;由向量的加减法三角形法则可知,当a,b非零且不共线时,|a|+|b|>|a-b|,故②正确;当γ=λ=μ=0时,γc=λa+μb成立,但a,b,c不一定共面,故③错误;因为|a·c+b·c|=|(a+b)·c|=|a+b||c|cos〈a+b,c〉≤|a+b|·|c|,故④错误.答案为B.方法三特例检验法特例检验(也称特例法或特殊值法)是用特殊值(或特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,再对各个选项进行检验,从而做出正确的选择.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.特例检验是解答选择题的最佳方法之一,适用于解答“对某一集合的所有元素、某种关系恒成立”,这样以全称判断形式出现的题目,其原理是“结论若在某种特殊情况下不真,则它在一般情况下也不真”,利用“小题小做”或“小题巧做”的解题策略.eq\o(\s\up7(),\s\do5(例3))设椭圆C:eq\f(x2,4)+eq\f(y2,3)=1的长轴的两端点分别是M,N,P是C上异于M,N的任意一点,则PM与PN的斜率之积等于()A.eq\f(3,4) B.-eq\f(3,4)C.eq\f(4,3) D.-eq\f(4,3)思维启迪本题直接求解较难,运算量较大,可利用特殊位置进行求解,由P为C上异于M,N的任一点,故可令P为椭圆短轴的一个端点.答案B解析取特殊点,设P为椭圆的短轴的一个端点(0,eq\r(3)),又取M(-2,0),N(2,0),所以kPM·kPN=eq\f(\r(3),2)·eq\f(\r(3),-2)=-eq\f(3,4),故选B.探究提高用特殊值法解题时要注意:1所选取的特例一定要简单,且符合题设条件;,2特殊只能否定一般,不能肯定一般;,3当选取某一特例出现两个或两个以上的选项都正确时,要根据题设要求选择另外的特例代入检验,直到找到正确选项为止.跟踪训练3如图,在棱柱的侧棱A1A和B1B上各有一动点P、Q满足A1P=BQ,过P、Q、C三点的截面把棱柱分成两部分,则其体积之比为(A.3∶1 B.2∶1C.4∶1 D.eq\r(3)∶1答案B解析将P、Q置于特殊位置:P→A1,Q→B,此时仍满足条件A1P=BQ(=0),则有VC-AA1B=VA1-ABC=eq\f(VABC-A1B1C1,3).故选B.方法四排除法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例对于错误的选项,逐一剔除,从而获得正确的结论.eq\o(\s\up7(),\s\do5(例4))[2016·山东潍坊模拟]已知函数y=f(x)的定义域为{x|x∈R且x≠0},且满足f(x)+f(-x)=0,当x>0时,f(x)=lnx-x+1,则函数y=f(x)的大致图象为()思维启迪结合函数的奇偶性、单调性、定义域、特殊自变量所对应函数值与零的大小等对选项进行验证排除.答案A解析因为函数y=f(x)的定义域为{x|x∈R且x≠0},且满足f(x)+f(-x)=0,所以f(x)为奇函数,故排除C、D,又f(e)=1-e+1<0,所以(e,f(e))在第四象限,排除B,故选A.探究提高1对于干扰项易于淘汰的选择题,可采用筛选法,能剔除几个就先剔除几个,如本例的图象问题.2允许使用题干中的部分条件淘汰选项.3如果选项中存在等效命题,那么根据规定——答案唯一,等效命题应该同时排除.4如果选项中存在两个相反的或互不相容的判断,那么其中至少有一个是假的.5如果选项之间存在包含关系,要根据题意才能判断.跟踪训练4函数f(x)=eq\f(sinx-1,\r(3-2cosx-2sinx))(0≤x≤2π)的值域是()A.eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(\r(2),2),0)) B.[-1,0]C.[-eq\r(2),-1] D.eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(\r(3),3),0))答案B解析令sinx=0,cosx=1,则f(x)=eq\f(0-1,\r(3-2×1-2×0))=-1,排除A、D;令sinx=1,cosx=0,则f(x)=eq\f(1-1,\r(3-2×0-2×1))=0,排除C,故选B.方法五数形结合法根据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断,这种方法叫数形结合法,有的选择题可通过命题条件的函数关系或几何意义,作出函数的图象或几何图形,借助于图象或图形的作法、形状、位置、性质,得出结论,图形化策略是以数形结合的数学思想为指导的一种解题策略.eq\o(\s\up7(),\s\do5(例5))已知函数f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(|x2+5x+4|,x≤0,,2|x-2|,x>0.))若函数y=f(x)-a|x|恰有4个零点,则实数a的取值范围为________.思维启迪研究函数零点的个数问题可转化为图象交点的个数,进而考虑数形结合法求解.答案(1,2)解析作出函数f(x)的图象,根据图象观察出函数f(x)的图象与函数y1=a|x|的图象交点的情况,然后利用判别式等知识求解.画出函数f(x)的图象如图所示.函数y=f(x)-a|x|有4个零点,即函数y1=a|x|的图象与函数f(x)的图象有4个交点(根据图象知需a>0).当a=2时,函数f(x)的图象与函数y1=a|x|的图象有3个交点.故a<2.当y=a|x|(x≤0)与y=|x2+5x+4|相切时,在整个定义域内,f(x)的图象与y1=a|x|的图象有5个交点,此时,由eq\b\lc\{\rc\(\a\vs4\al\co1(y=-ax,,y=-x2-5x-4))得x2+(5-a)x+4=0.当Δ=0得(5-a)2-16=0,解得a=1,或a=9(舍去),则当1<a<2时,两个函数图象有4个交点.故实数a的取值范围是1<a<2.探究提高数形结合就是通过数与形之间的对应和转化来解决数学问题.它包含以形助数和以数解形两个方面.一般来说,涉及函数、不等式、确定参数取值范围、方程等问题时,可考虑数形结合法.运用数形结合法解题一定要对有关函数图象、方程曲线、几何图形较熟悉,否则,错误的图象反而会导致错误的选择.跟踪训练5[2016·山东济南模拟]若至少存在一个x(x≥0),使得关于x的不等式x2≤4-|2x-m|成立,则实数m的取值范围为()A.[-4,5] B.[-5,5]C.[4,5] D.[-5,4]答案A解析由x2≤4-|2x-m|可得4-x2≥|2x-m|,在同一坐标系中画出函数y=4-x2(x≥0),y=|2x-m|的图象如图所示.①当y=|2x-m|位于图中实折线部分时,由CD:y=-2x+m与y=4-x2相切可得m=5,显然要使得至少存在一个x(x≥0),使得原不等式成立,需满足m≤5;②当y=|2x-m|位于图中虚折线部分时,由AB:y=2x-m过点(0,4)可得-m=4,显然要使得至少存在一个x(x≥0),使得原不等式成立,需满足-m≤4,即m≥-4.综上可知,实数m的取值范围为[-4,5].方法六构造法构造法是一种创造性思维,是综合运用各种知识和方法,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造与问题相关的数学模式,揭示问题的本质,从而沟通解题思路的方法.eq\o(\s\up7(),\s\do5(例6))已知函数f(x)是定义在R上的可导函数,且对于∀x∈R,均有f(x)>f′(x),则有()A.e2016f(-2016)<f(0),f(2016)>e2016B.e2016f(-2016)<f(0),f(2016)<e2016C.e2016f(-2016)>f(0),f(2016)>e2016D.e2016f(-2016)>f(0),f(2016)<e2016思维启迪根据选项的结构特征,构造函数,由函数的单调性进行求解.答案D解析构造函数g(x)=eq\f(f(x),ex),则g′(x)=eq\f(f′(x)ex-(ex)′f(x),(ex)2)=eq\f(f′(x)-f(x),ex),因为∀x∈R,均有f(x)>f′(x),并且ex>0,所以g′(x)<0,故函数g(x)=eq\f(f(x),ex)在R上单调递减,所以g(-2016)>g(0),g(2016)<g(0),即eq\f(f(-2016),e-2016)>f(0),eq\f(f(2016),e2016)<f(0),也就是e2016f(-2016)>f(0),f(2016)<e2016f探究提高构造法求解时需要分析待求问题的结构形式,特别是研究整个问题复杂时,单独摘出其中的部分进行研究或者构造新的情景进行研究.跟踪训练6若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,给出下列五个命题:①四面体ABCD每组对棱相互垂直;②四面体ABCD每个面的面积相等;③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°而小于180°;④连接四面体ABCD每组对棱中点的线段相互垂直平分;⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长.其中正确命题的个数是()A.2 B.3C.4 D.5答案B解析构造长方体,使三组对棱恰好是长方体的三组平行面中异面的对角线,在此背最下,长方体的长、宽、高分别为x,y,z.对于①,需要满足x=y=z,才能成立;因为各个面都是全等的三角形(由对棱相等易证),则四面体的同一顶点处对应三个角之和一定恒等于180°,故②正确,③显然不成立;对于④,由长方体相对面的中心连线相互垂直平分判断④正确;每个顶点出发的三条棱的长恰好分别等于各个面的三角形的三边长,⑤显然成立.故正确命题有②④⑤.方法七估算法由于选择题提供了唯一正确的选择支,解答又无需过程.因此,有些题目不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量,但是加强了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国制证系统市场调查研究报告
- 2025年纸制包装品项目可行性研究报告
- 2025至2031年中国烟碱原液行业投资前景及策略咨询研究报告
- 2025年万花粉盒项目可行性研究报告
- 2025至2030年过滤砂缸项目投资价值分析报告
- 2025至2030年绣花坎肩项目投资价值分析报告
- 2025至2030年中国蛋白微素精数据监测研究报告
- 2025至2030年中国真空成型异型件数据监测研究报告
- 2025至2030年中国光丝提花平纹布数据监测研究报告
- 酒店员工合同范本
- 2 找春天 公开课一等奖创新教学设计
- 人教版(2024)英语七年级上册单词表
- 2024年江西电力职业技术学院单招职业技能测试题库及答案解析
- 【真题】2023年常州市中考道德与法治试卷(含答案解析)
- 北京理工大学应用光学课件(大全)李林
- 国家综合性消防救援队伍消防员管理规定
- 河南省三门峡市各县区乡镇行政村村庄村名居民村民委员会明细
- 五年级上册数学习题课件 简便计算专项整理 苏教版 共21张
- 【审计工作底稿模板】FJ1一年内到期的非流动负债
- 高考语文古诗词必背重点提纲
- 超星尔雅学习通《大学生心理健康教育(兰州大学版)》章节测试含答案
评论
0/150
提交评论