版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§1.1 命题及四种命题学习目标掌握命题、真命题及假命题的概念;2. 四种命题的内在联系,能根据一个命题来构造它的逆命题、否命题和逆否命题 .学习过程一、课前准备复习:什么是定理 ?什么是公理?.二、新课导学※学习探究1.数学中,我们把可以 的 叫做命题.其中 的命题叫做真命题, 的命题叫做假命题练习:下列语句中:1)若直线a//b,则直线a和直线b无公共点;2)2473)垂直于同一条直线的两个平面平行;4)若x21,则x1;5)两个全等三角形的面积相等;6)3能被2整除.其中真命题有 ,假命题有2.命题的数学形式:“若 p,则q”,命题中的 p叫做命题的 ,q叫做命题的 .※典型例题例1:下列语句中哪些是命题 ?是真命题还是假命题 ?1)空集是任何集合的子集;2)若整数a是素数,则a是奇数;3)指数函数是增函数吗?4)若空间有两条直线不相交,则这两条直线平行;(5)(2)22;(6)x15.命题有,真命题有假命题有.例2指出下列命题中的条件p和结论q:1)若整数a能被2整除,则a是偶数;2)若四边形是菱形,则它的对角线互相垂直平分.解:(1)条件p:结论q:2)条件p:
结论q:变式:将下列命题改写成“若 p,则q”的形式,并判断真假:1)垂直于同一条直线的两条直线平行;2)负数的立方是负数;3)对顶角相等.※ 动手试试判断下列命题的真假:(1)能被6整除的整数一定能被 3整除;2)若一个四边形的四条边相等,则这个四边形是正方形;3)二次函数的图象是一条抛物线;4)两个内角等于45的三角形是等腰直角三角形.2.把下列命题改写成“若 p,则q”的形式,并判断它们的真假 .等腰三角形两腰的中线相等;偶函数的图象关于y轴对称;垂直于同一个平面的两个平面平行.小结:判断一个语句是不是命题注意两点:( 1)是否是陈述句;( 2)是否可以判断真假 .四种命题的概念(1)对两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做 , 其中一个命题叫做 另一个命题叫做若原命题为:“若 p,则q”,则逆命题为:“ ”.一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定 , 我们把这样的两个命题叫做 , 其中一个命题叫做原命题,那么另一个命题叫做原命题的 .若原命题为:“若 p,则q”,则否命题为:“ ”(3)一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定 , 我们把这样的两个命题叫做 , 其中一个命题叫做原命题 ,那么另一个命题叫做原命题的 .若原命题为:“若 p,则q”,则逆否命题为:“ ”例3命题:“已知 a、b、c、d是实数,若 a b,c d,则a c b d”.写出逆命题、否命题、逆否命题 .变式:设原命题为“已知a、b是实数,若ab是无理数,则a、b都是无理数”,写出它的逆命题、否命题、逆否命题.1※动手试试写出下列命题的逆命题、否命题和逆否命题并判断它们的真假:(1)若一个整数的末位数是 0,则这个整数能被 5整除;2)若一个三角形的两条边相等,则这个三角形的两个角相等;3)奇函数的图像关于原点对称.三、总结提升:※学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?学习评价※自我评价 你完成本节导学案的情况为( )A. 很好 B. 较好 C. 一般 D. 较差※当堂检测(时量: 5分钟 满分:10分)计分:下列语句中不是命题的是(C).A.x20B.正弦函数是周期函数C.x{1,2,3,4,5}D.1252.设M、N是两个集合,则下列命题是真命题的是(A).A.如果MN,那么MNMB.如果MNN,那么MNC.如果MN,那么MNMD.MNN,那么NM3.下面命题已写成“若p,则q”的形式的是(C).A.能被5整除的数的末位是5到线段两个端点距离相等的点在线段的垂直平分线上若一个等式的两边都乘以同一个数,则所得的结果仍是等式D.圆心到圆的切线的距离等于半径4.下列语句中:(1)22是有理数(2)2100是个大数(3)好人一生平安(4)968能被11整除,其中是命题的序号是5.将“偶函数的图象关于y轴对称”写成“若p,则q”的形式,则p:,q:.拓展写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假(1)若a,b都是偶数,则 a b是偶数;(2)若m0,则方程x2有实数根.xm0
2.把下列命题改写成“若 p,则q”的形式,并写出它们的逆命题、否命题和逆否命题,并判断它们的真假:(1)线段的垂直平分线上的点到这条线段两个端点的距离相等;(2)矩形的对角线相等 .§1.1.2 四种命题间的相互关系学习目标1.掌握四种命题的内在联系;2. 能分析逆命题、否命题和逆否命题的相互关系,并能利用等价关系转化 .学习过程一、课前准备复习1:四种命题命题表述形式原命题若p,则q逆命题(1)否命题(2)逆否命题(3)请填(1)(2)(3)空格.复习2:判断命题“若a0,则x2xa0有实根”的逆命题的真假.二、新课导学※学习探究1:分析下列四个命题之间的关系1)若f(x)是正弦函数,则f(x)是周期函数;2)若f(x)是周期函数,则f(x)是正弦函数;(3)若f(x)不是正弦函数,则 f(x)不是周期函数;(4)若f(x)不是周期函数,则 f(x)不是正弦函数 .(1)(2)互为 (1)(3)互为(1)(4)互为 (2)(3)互为通过上例分析我们可以得出四种命题之间有如下关系:2原命题互逆逆命题若p则q互若q则p否为互逆互否为逆否否互否命题逆否命题若┐q则┐p若┐p则┐q互逆2、四种命题的真假性20,则x2”为原命题,写出它的逆命题、否命题、逆否命题,并判断这些命题的真假例1以“若x3x2并总结其规律性.练习:判断下列命题的真假.(1)命题“在ABC中,若ABAC,则CB”的逆命题;(2)命题“若ab0,则a0且b0”的否命题;(3)命题“若a0且b0,则ab0”的逆否命题;(4)命题“若a0且b0,则a2b20”的逆命题.小结:可知四种命题的真假性之间有如下关系:(1) .(2) .反思:(1)直接判断(2)互为逆否命题的两个命题等价来判断 .※典型例题例1证明:若x2 y2 0,则x y 0.
变式:判断命题“若 x2 y2 0,则x y 0”是真命题还是假命题?练习:证明:若 a2 b2 2a 4b 3 0,则a b 1.例2已知函数 f(x)在( , )上是增函数,a,b R,对于命题“若 a b 0,则f(a) f(b) f(a) f(b).”(1) 写出逆命题,判断其真假,并证明你的结论 .写出其逆否命题,并证明你的结论.※ 动手试试1.求证:若一个三角形的两条边不等,这两条边所对的角也不相等 .2.命题“如果x22)ab,那么x2ab”的逆否命题是(A.如果xa2b2,那么x2abB.如果x2ab,那么xa2b2C.如果x2ab,那么xa2b2D.如果xa2b2,那么x2ab3三、总结提升:※学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?学习评价※自我评价你完成本节导学案的情况为()A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.命题“若x0且y0,则xy0”的否命题是(D).A.若x0,y0,则xy0B.若x0,y0,则xy0C.若x,y至少有一个不大于0,则xy0D.若x,y至少有一个小于0,或等于0,则xy02.命题“正数a的平方根不等于0”是命题“若a不是正数,则它的平方根等于0”的(B).A.逆命题B.否命题C.逆否命题D.等价命题3.用反法证明命题“23是无理数”时,假设正确的是(D).A.假设2是有理数B.假设3是有理数C.假设2或3是有理数D.假设23是有理数4.若x2的逆命题是1,则x1否命题是5.命题“若ab,则2a2b1”的否命题为拓展1. 已知a,b是实数,若 x2 ax b 0有非空解集,则 a2 4b 0,写出该命题的逆命题、否命题、逆否命题并判断其真假.2. 写出下列命题的逆命题、否命题及逆否命题,并判断它们的真假 .(1)若a b,则a c b c;(2)全等三角形一定是相似三角形;
§1.1.3 充分条件与必要条件学习目标理解必要条件和充分条件的意义;能判断两个命题之间的关系.学习过程一、课前准备复习1:请同学们画出四种命题的相互关系图 .复习2:将命题“线段的垂直平分线上的点到这条线段两个端点的距离相等”改写为“若 p,则q”的形式,并写出它的逆命题、否命题、逆否命题并判断它们的真假 .二、新课导学※学习探究探究任务:充分条件和必要条件的概念问题:2 21. 命题“若 x a b,则x 2ab”1)判断该命题的真假;2)改写成“若p,则q”的形式,则:q:2.1. 命题“若ab 0,则a 0”1)判断该命题的真假;2)改写成“若p,则q”的形式,则:q:新知:一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.我们就说,由p推出q,记作pq,并且说p是q的,q是p的试试:用符号“”与“”填空:(1)x2y2xy;(2)内错角相等两直线平行;(3)整数a能被6整除a的个位数字为偶数;(4)acbcab.4※典型例题例1下列“若p,则q”形式的命题中,哪些命题中的p是q的充分条件?(1)若x1,则x24x30;(2)若f(x)x,则f(x)在(,)上为增函数;(3)若x为无理数,则x2为无理数.练习:下列“若 P,则q”的形式的命题中,哪些命题中的 p是q的充分条件?(1)若两条直线的斜率相等,则这两条直线平行;2)若x5,则x10例2下列“若p,则q”形式的命题中哪些命题中的q是p必要条件?(1)若x22y,则xy;2)若两个三角形全等,则这两个三角形面积相等;3)若ab,则acbc练习:下列“若 p,则q”形式的命题中哪些命题中的 q是p必要条件?(1)若a 5是无理数,则 a是无理数;(2)若(x a)(x b) 0,则x a.小结:判断命题的真假是解题的关键 .
※动手试试练1. 判断下列命题的真假 .(1)x 2是x2 4x 4 0的必要条件;(2)圆心到直线的距离等于半径是这条直线为圆的切线的必要条件;(3)sinsin是的充分条件;(4)ab0是a0的充分条件.练2.下列各题中,p是q的什么条件?(1)p:x1,q:x1x1;(2)p:|x2|3,q:1x5;(3)p:x2,q:x33x;(4)p:三角形是等边三角形,q:三角形是等腰三角形.三、总结提升※学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※知识拓展设A,B为两个集合,集合AB,那么xA是xB的条件,xB是xA的条件.学习评价※自我评价你完成本节导学案的情况为()A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.在平面内,下列哪个是“四边形是矩形”的充分条件?(A).A.平行四边形对角线相等B.四边形两组对边相等C.四边形的对角线互相平分D.四边形的对角线垂直2.x,yR,下列各式中哪个是“xy0”的必要条件?(B).A.xy0B.x2y20C.xy0D.x3y303.平面//平面的一个充分条件是(D).A.存在一条直线a,a//,a//B.存在一条直线a,a,a//C.存在两条平行直线a,b,a,b,a//,b//D.存在两条异面直线a,b,a,b,a//,b//4.p:x20,q:(x2)(x3)0,p是q的条件.5.p:两个三角形相似;q:两个三角形全等,p是q的条件.5拓展判断下列命题的真假(1)“a b”是“a2 b2”的充分条件;(2)“|a||b|”是“a2 b2”的必要条件 .2. 已知A {x|x满足条件 p},B {x|x满足条件q}.(1)如果A B,那么p是q的什么条件?(2)如果B A,那么p是q的什么条件?
§1.1.4 充要条件学习目标理解充要条件的概念;2. 掌握充要条件的证明方法,既要证明充分性又要证明必要性 .学习过程一、课前准备复习1:什么是充分条件和必要条件 ?复习2:p:一个四边形是矩形 q:四边形的对角线相等 .p是q的什么条件?二、新课导学※学习探究探究任务一:充要条件概念问题:已知 p:整数a是6的倍数,q:整数a是2和3的倍数.那么p是q的什么条件?q又是p的什么条件?新知:如果 p q,那么p与q互为试试:下列形如“若 p,则q”的命题是真命题吗?它的逆命题是真命题吗? p是q的什么条件?(1)若平面 外一条直线 a与平面 内一条直线平行,则直线 a与平面 平行;(2)若直线a与平面 内两条直线垂直,则直线 a与平面 垂直.反思:充要条件的实质是原命题和逆命题均为真命题 .※典型例题例1下列形如“若 p,则q”的命题是真命题吗?它的逆命题是真命题吗?哪些 p是q的充要条件?(1) p: b 0,q:函数f(x) ax2 bx c是偶函数;(2) p: x 0,y 0, q:xy 0(3) p: a b, q:a c b c6小结:判断是否充要条件两种方法(1)p q且q p;2)原命题、逆命题均为真命题;用逆否命题转化.练习:在下列各题中,p是q的充要条件?(1)24,q:x3x4p:x3x(2) p: x 3 0, q:(x 3)(x 4) 0(3)p:b24ac0(a0),2bxc0(a0)有实数根.q:ax(4)p:x1是方程ax2的根bxc0q:abc0小结:证明充要条件既要证明充分性又要证明必要性 .※动手试试练.求圆(xa)2(yb)2r2经过原点的充要条件.三、总结提升※学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※知识拓展设A、B为两个集合,集合 A B是指x A x B,则“x A”与“x B”互为条件.
学习评价※自我评价 你完成本节导学案的情况为( ).A. 很好 B. 较好 C. 一般 D. 较差※当堂检测(时量: 5分钟 满分:10分)计分:下列命题为真命题的是(B).A.ab是a2b2的充分条件B.|a||b|是a2b2的充要条件x21是x1的充分条件D.是tantan的充要条件2.“xMN”是“xMN”的(A).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.设p:b24ac0(a0),q:关于x的方程ax2bxc0(a0)有实根,则p是q的(A).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.25x30的一个必要不充分条件是().2xA.1x3B.1x022C.3x1D.1x625.用充分条件、必要条件、充要条件填空.(1).x3是x5的(2).x3是x22x30的(3).两个三角形全等是两个三角形相似的拓展1. 证明:a 2b 0是直线ax 2y 3 0和直线x by 2 0垂直的充要条件 .2.求证: ABC是等边三角形的充要条件是 a2 b2 c2 ab ac bc,这里a,b,c是 ABC的三边.7§1.2简单的逻辑联结词学习目标了解“或”“且”“非”逻辑联结词的含义;2.掌握pq,pq,p的真假性的判断;3.正确理解p的意义,区别p与p的否命题;4.掌握pq,pq,p的真假性的判断,关键在于p与q的真假的判断.学习过程一、课前准备(预习教材 P14~P16,找出疑惑之处)复习1:什么是充要条件 ?复习2:已知A {x|x满足条件 p},B {x|x满足条件q}如果AB,那么p是q的什么条件;如果BA,那么p是q的什么条件;(3) 如果A B,那么p是q的什么条件.二、新课导学※学习探究探究任务一:“且“的意义问题:下列三个命题有什么关系 ?1)12能被3整除;2)12能被4整除;3)12能被3整除且能被4整除.新知:1.一般地,用逻辑联结词“且”把命题p和命题q联结起来就得到一个新命题,记作“”,读作“”.2.规定:pqpq真真真真假假假真假假假假试试:判断下列命题的真假:1)12是48且是36的约数;2)矩形的对角线互相垂直且平分.
反思:p q的真假性的判断,关键在于 p与q的真假的判断.探究任务二:“或“的意义问题:下列三个命题有什么关系 ?27是7的倍数;2)27是9的倍数;3)27是7的倍数或是9的倍数.新知:1.一般地,用逻辑联结词“或”把命题p和命题q联结起来就得到一个新命题,记作“”,读作“”.2.规定:pqpq真真真真假真假真真假假假试试:判断下列命题的真假:1)47是7的倍数或49是7的倍数;2)等腰梯形的对角线互相平分或互相垂直.反思:p q的真假性的判断,关键在于 p与q的真假的判断.探究任务三:“非“的意义问题:下列两个命题有什么关系 ?1)35能被5整除;2)35不能被5整除;新知:1.一般地,对一个命题的全盘否定就得到一个新命题,记作“ ”,读作“ ”或“ ”.规定:p p真 假假 真试试:写出下列命题的否定并判断他们的真假:81)2+2=5;2)3是方程x290的根;(3) (1)2 1反思: p的真假性的判断,关键在于 p的真假的判断.※典型例题例1将下列命题用“且”联结成新命题并判断他们的真假:(1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等;(2)p:菱形的对角线互相垂直, q:菱形的对角线互相平分;(3)p:35是15的倍数,q:35是7的倍数变式:用逻辑联结词“且”改写下列命题,并判断他们的真假:1)1既是奇数,又是素数;2)2和3都是素数.小结:p q的真假性的判断,关键在于 p与q的真假的判断 .例2判断下列命题的真假22;集合A是AB的子集或是AB的子集;周长相等的两个三角形全等或面积相等的两个三角形全等.变式:如果 p q为真命题,那么 p q一定是真命题吗?反之, p q为真命题,那么 p q一定是真命题吗?小结:p q的真假性的判断,关键在于 p与q的真假的判断 .例3写出下列命题的否定,并判断他们的真假:(1)p:ysinx是周期函数;(2)p:32(3)p:空集是集合A的子集.小结: p的真假性的判断,关键在于 p的真假的判断.
三、总结提升※学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※知识拓展阅读教材第 18页,理解逻辑联结词“且”“或”“非”与集合运算“交”“并”“补”的关系 .学习评价※自我评价 你完成本节导学案的情况为( ).A. 很好 B. 较好 C. 一般 D. 较差※当堂检测(时量: 5分钟 满分:10分)计分:1. “p或q为真命题”是“ p且q为真命题”的( B ).A.充分不必要条件 B. 必要不充分条件C.充要条件 D. 既不充分也不必要条件2.命题P:在 ABC中, C B是sinC sinB的充要条件;命题 q:a b是ac2 bc2的充分不必要条件,则A).A.p真q假 B. p假q假C.“p或q”为假 D. “p且q”为真命题:(1)平行四边形对角线相等;(2)三角形两边的和大于或等于第三边;(3)三角形中最小角不大于60;(4)对角线相等的菱形为正方形.其中真命题有(D).A.1B.2C.3D.44.命题p:0不是自然数,命题q:是无理数,在命题“p或q”“p且q”“非p”“非q”中假命题是,真命题是.5.已知p:|x2x|6,q:xZ,pq,q都是假命题,则x的值组成的集合为拓展写出下列命题,并判断他们的真假:(1)pq,这里p:4{2,3},q:2{2,3};(2)pq,这里p:4{2,3},q:2{2,3};pq,这里p:2是偶数,q:3不是素数;pq,这里p:2是偶数,q:3不是素数.判断下列命题的真假:1)782)52且733)34或349§1.2.2 全称量词和存在量词学习目标掌握全称量词与存在量词的的意义;2. 掌握含有量词的命题:全称命题和特称命题真假的判断 .学习过程一、课前准备(预习教材 P18~P20,找出疑惑之处)复习1:写出下列命题的否定 ,并判断他们的真假:1)2是有理数;2)5不是15的约数3)87154)空集是任何集合的真子集复习2:判断下列命题的真假,并说明理由:(1)pq,这里p:是无理数,q:是实数;(2)pq,这里p:是无理数,q:是实数;(3)pq,这里p:23,q:8715;(4)pq,这里p:23,q:8715.二、新课导学※学习探究探究任务一:全称量词的意义问题:1.下列语句是命题吗?( 1)与(3),(2)与(4)之间有什么关系?1)x3;2)2x1是整数;3)对所有的xR,x3;(4)对任意一个 x Z,2x 1是整数.下列语名是命题吗?(1)与(3),(2)与(4)之间有什么关系?2x13;x能被2和3整除;(3)存在一个x0R,使2x013;(4)至少有一个x0Z,x0能被2和3整除.新知:1.短语“”“”在逻辑中通常叫做全称量词,并用符号“”表示,含有的命题,叫做全称命题.其基本形式为:xM,p(x),读作:
2. 短语“ ”“ ”在逻辑中通常叫做存在量词,并用符号“ ”表示,含有的命题,叫做特称命题 .其基本形式 x0 M,p(x0),读作:试试:判断下列命题是不是全称命题或者存在命题,如果是,用量词符号表示出来 .1)中国所有的江河都流入大海;2)有一个素数不是奇数.3)任何一个实数除以1,仍等于这个实数;4)每一个非零向量都有方向.反思:注意哪些词是量词是解决本题的关键 ,还应注意全称命题和存在命题的结构形式 .※典型例题例1判断下列全称命题的真假:1)所有的素数都是奇数;2)xR,x211;(3)对每一个无理数x,x2也是无理数.变式:判断下列命题的真假:(1)x(5,8),f(x)x24x20(2)x(3,),f(x)x24x20小结:要判定一个全称命题是真命题,必须对限定集合M中每一个元素x验证p(x)成立;但要判定全称命题是假命题,却只要能举出集合M中的一个xx0,使得p(x0)不成立即可.例2判断下列特称命题的真假:(1)有一个实数x0,使x022x030;2)存在两个相交平面垂直于同一条直线;3)有些整数只有两个正因数.变式:判断下列命题的真假:aZ,a23a2a3,a23a2小结:要判定特称命题“ x0 M,p(x0)”是真命题只要在集合M中找一个元素x0,使p(x0)成立即可;如果集合M中,使P(x)成立的元素x不存在,那么这个特称命题是假命题 .10※动手试试练1.判断下列全称命题的真假:(1)每个指数函数都是单调函数;(2)任何实数都有算术平方根;(3)2是无理数.x{x|x是无理数},x练2. 判定下列特称命题的真假:(1) x0 R,x0 0;(2)至少有一个整数,它既不是合数,也不是素数;2(3) x0 {x|x是无理数},x0是无理数.三、总结提升※学习小结这节课你学到了一些什么?你想进一步探究的问题是什么?※知识拓展数理逻辑又称符号逻辑,是用数学的方法研究推理过程的一门学问.德国启蒙思想家莱布尼茨(1646—1716)是数理逻辑的创始人。学习评价※自我评价 你完成本节导学案的情况为( ).A. 很好 B. 较好 C. 一般 D. 较差※当堂检测(时量: 5分钟 满分:10分)计分:下列命题为特称命题的是(D).偶函数的图像关于y轴对称正四棱柱都是平行六面体不相交的两条直线都是平行线存在实数大于等于3下列特称命题中真命题的个数是(D).(1)xR,x0;(2)至少有一个整数它既不是合数也不是素数;(3)x{x|x是无理数},x2是无理数.A.0个B.1个C.2个D.3个下列命题中假命题的个数(B).(1)xR,x211;(2)xR,2x13;(3)xZ,x能被2和3整除;(4)xR,x22x30A.0个B.1个C.2个D.4个下列命题中1)有的质数是偶数;(2)与同一个平面所成的角相等的两条直线平行;(3)有的三角形三个内角成等差数列;4)与圆只有一个公共点的直线是圆的切线,其中全称命题是特称命题是 .真命题是
5. 用符号“ ”与“ ”表示下列含有量词的命题 .实数的平方大于等于0:(2)存在一对实数使 2x 3y 3 0成立:拓展判断下列全称命题的真假:1)末位是0的整数可以被5整除;2)线段的垂直平分线上的点到这条线段两端点距离相等;3)负数的平方是正数;4)梯形的对角线相等.判断下列特称命题的真假:(1)有些实数是无限不循环小数;2)有些三角形不是等腰三角形;3)有的菱形是正方形.11§学习目标掌握对含有一个量词的命题进行否定的方法,要正确掌握量词否定的各种形式;2. 明确全称命题的否定是存在命题,存在命题的否定是全称命题 .学习过程一、课前准备复习1:判断下列命题是否为全称命题:(1)有一个实数 ,tan 无意义;(2)任何一条直线都有斜率;复习2:判断以下命题的真假:(1)xR,x2x10(2)xQ,x243二、新课导学※学习探究探究任务一:含有一个量词的命题的否定问题:1.写出下列命题的否定:1)所有的矩形都是平行四边形;2)每一个素数都是奇数;(3) x R,x2 2x 1 0.这些命题和它们的否定在形式上有什么变化 ?写出下列命题的否定:1)有些实数的绝对值是正数;2)某些平行四边形是菱形;(3) x0 R,x02 1 0.这些命题和它们的否定在形式上有什么变化 ?
新知:1.一般地,对于一个含有一个量词的全称命题的否定有下面的结论:全称命题 p: x p,p(x),它的否定 p: x0 M, p(x0)一般地,对于一个含有一个量词的特称命题的否定有下面的结论:特称命题 p: x0 M,p(x0),它的否定 p: x M,p(x).试试:1.写出下列命题的否定:(1) n Z,n Q;2)任意素数都是奇数;3)每个指数函数都是奇函数.写出下列命题的否定:1)有些三角形是直角三角形;2)有些梯形是等腰梯形;3)存在一个实数,它的绝对值不是正数.反思:全称命题的否定变成特称命题 .※典型例题例1 写出下列全称命题的否定:1)p:所有能被3整除的数都是奇数;2)p:每一个平行四边形的四个顶点共圆;(3)p:对任意x Z,x2的个位数字不等于 3.变式:写出下列全称命题的否定,并判断真假 .(1)p:21xR,xx04(2) p:所有的正方形都是矩形 .12例2写出下列特称命题的否定:学习评价(1)p:x0R,x022x020;※自我评价你完成本节导学案的情况为().(2)p:有的三角形是等边三角形;A.很好B.较好C.一般D.较差(3)p:有一个素数含有三个正因数.※当堂检测(时量:5分钟满分:10分)计分:1.命题“原函数与反函数的图象关于yx对称”的否定是(C).A.原函数与反函数的图象关于yx对称变式:写出下列特称命题的否定,并判断真假.B.原函数不与反函数的图象关于yx对称(1)22x20;C.存在一个原函数与反函数的图象不关于p:xR,xyx对称(2)p:至少有一个实数30.x,使x1D.存在原函数与反函数的图象关于yx对称2.对下列命题的否定说法错误的是(C).小结:全称命题的否定变成特称命题.A.p:能被3整除的数是奇数;p:存在一个能被3整除的数不是奇数※动手试试B.p:每个四边形的四个顶点共圆;p:练1.写出下列命题的否定:存在一个四边形的四个顶点不共圆(1)xN,x3x2;C.p:有的三角形为正三角形;p:所有(2)所有可以被5整除的整数,末位数字都是0;的三角形不都是正三角形(3)x0R,x02x010;D.p:xR,x22x20;(4)存在一个四边形,它的对角线是否垂直.p:xR,x22x203.命题“对任意的xR,x3x210”的否定是(C).A.不存在xR,x3x210B.存在xR,x3x210C.存在xR,x3x210练2.判断下列命题的真假,写出下列命题的否定:D.对任意的xR,x3x210(1)每条直线在y轴上都有截矩;4.平行四边形对边相等的否定是(2)每个二次函数都与x轴相交;(3)存在一个三角形,它的内角和小于180;5.命题“存在一个三角形没有外接圆”的否定是.(4)存在一个四边形没有外接圆.拓展1.写出下列命题的否定:(1)若2x4,则x2;(2)若m0,则x2xm0有实数根;(3)可以被5整除的整数,末位是0;(4)被8整除的数能被4整除;(5)若一个四边形是正方形则它的四条边相等.三、总结提升※学习小结2.写出下列命题的否定.这节课你学到了一些什么?你想进一步探究的问题是什么?(1)所有能被3整除的整数都是奇数;※知识拓展(2)每一个四边形的四个顶点共圆;英国数学家布尔(G.BOOL)建立了布尔代数,并创造了一套符号系统,利用符号来表示逻辑中的各种概念.他不(3)对任意xZ,x2的个位数字不等于3;建立了一系列的运算法则,利用代数的方法研究逻辑问题,初步奠定了数理逻辑的基础.(4)有一个素数含有三个正因数;(5)有的三角形是等边三角形.13第一章 常用逻辑用语(复习)学习目标命题及其关系(1)了解命题的逆命题、否命题与逆否命题,会分析四种命题间的相互关系;(2)理解必要条件、充分条件与充要条件的意义 .简单的逻辑联结词了解逻辑联结词“或”“且”“非”的含义.全称量词与存在量词理解全称量词与存在量词的意义;(2)能正确地对含有一个量词的命题进行否定 .学习过程一、课前准备复习1:复习2:什么是命题?其常见的形式是什么?什么是真命题?什么是假命题?有哪四种命题?他们之间的关系是怎样的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 清代诗词课程设计特点
- 蔬菜印画课程设计
- 2024-2030年中国聚乙烯纤维行业需求动态与投资盈利预测研究报告
- 2024-2030年中国米糠油行业市场规模及投资方向分析研究报告
- 2024-2030年中国甲乙MEK行业发展趋势及竞争策略研究研究报告
- 2024-2030年中国烤肠机行业运行态势与投资运作模式分析研究报告
- 2024-2030年中国汽车维修行业发展前景及竞争趋势预测报告
- 2024-2030年中国松节油行业竞争动态及投资盈利预测报告
- 2024-2030年中国儿童室内游乐园行业运营效益及消费前景预测报告
- 洞式进水口课程设计
- 跨国企业中方外派人员的跨文化适应
- 国际航空运费计算
- 《静载试验讨论》课件
- 《光伏屋顶系统简介》课件
- 村里建群管理制度
- 消防车事故培训课件模板
- 【城市轨道交通运营安全管理研究5300字】
- 2024年中核汇能有限公司招聘笔试参考题库含答案解析
- 上海市2024届高三7月模拟预测历史试题(等级考)(解析版)
- 肺炎护理查房课件
- 北京地区成人本科学士学位英语统一考试应试指南
评论
0/150
提交评论