反比例函数经典测试题及答案解析_第1页
反比例函数经典测试题及答案解析_第2页
反比例函数经典测试题及答案解析_第3页
反比例函数经典测试题及答案解析_第4页
反比例函数经典测试题及答案解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

反比例函数经典测试题及答案解析一、选择题1.已知点在双曲线上,则下列各点一定在该双曲线上的是()A. B. C. D.【答案】A【解析】【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点在双曲线上,∴,∵,∴点(3,-1)在该双曲线上,∵,∴点、、均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k值是解题的关键.2.已知点A(﹣2,y1),B(a,y2),C(3,y3)都在反比例函数的图象上,且﹣2<a<0,则()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y3【答案】D【解析】【分析】根据k>0,在图象的每一支上,y随x的增大而减小,双曲线在第一三象限,逐一分析即可.【详解】∵反比例函数y=中的k=4>0,∴在图象的每一支上,y随x的增大而减小,双曲线在第一三象限,

∵-2<a<0,

∴0>y1>y2,∵C(3,y3)在第一象限,∴y3>0,∴,故选D.【点睛】本题考查了反比例函数的性质,熟练地应用反比例函数的性质是解题的关键.3.如图,在平面直角坐标系中,点是函数在第一象限内图象上一动点,过点分别作轴于点轴于点,分别交函数的图象于点,连接.当点的纵坐标逐渐增大时,四边形的面积()A.不变 B.逐渐变大 C.逐渐变小 D.先变大后变小【答案】A【解析】【分析】根据反比例函数系数k的几何意义得出矩形ACOB的面积为k,,则四边形OFAE的面积为定值.【详解】∵点A是函数)在第一象限内图象上,过点A分别作AB⊥x轴于点B,AC⊥y轴于点C,∴矩形ACOB的面积为,∵点E、F在函数的图象上,∴,∴四边形OFAE的面积,故四边形OFAE的面积为定值,保持不变,故选:A.【点睛】本题考查了反比例函数中系数k的几何意义,根据反比例函数系数k的几何意义可求出四边形和三角形的面积是解题的关键.4.在平面直角坐标系中,分别过点,作轴的垂线和,探究直线和与双曲线的关系,下列结论中错误的是A.两直线中总有一条与双曲线相交B.当=1时,两条直线与双曲线的交点到原点的距离相等C.当时,两条直线与双曲线的交点在轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2【答案】D【解析】【分析】根据题意给定m特定值、非特定值分别进行讨论即可得.【详解】当=0时,与双曲线有交点,当=-2时,与双曲线有交点,当时,和双曲线都有交点,所以正确,不符合题意;当时,两交点分别是(1,3),(3,1),到原点的距离都是,所以正确,不符合题意;当时,在轴的左侧,在轴的右侧,所以正确,不符合题意;两交点分别是),两交点的距离是,当无限大时,两交点的距离趋近于2,所以不正确,符合题意,故选D.【点睛】本题考查了垂直于x轴的直线与反比例函数图象之间的关系,利用特定值,分情况进行讨论是解本题的关键,本题有一定的难度.5.下列函数中,当x>0时,函数值y随自变量x的增大而减小的是()A.y=x2 B.y=x C.y=x+1 D.【答案】D【解析】【分析】需根据函数的性质得出函数的增减性,即可求出当x>0时,y随x的增大而减小的函数.【详解】解:A、y=x2是二次函数,开口向上,对称轴是y轴,当x>0时,y随x的增大而增大,错误;B、y=x是一次函数k=1>0,y随x的增大而增大,错误;C、y=x+1是一次函数k=1>0,y随x的增大而减小,错误;D、是反比例函数,图象无语一三象限,在每个象限y随x的增大而减小,正确;故选D.【点睛】本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键.6.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,则CE的长为()A. B. C.3.5 D.5【答案】B【解析】【分析】设点D(m,),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,根据AAS先证明△DHA≌△CGD、△ANB≌△DGC可得AN=DG=1=AH,据此可得关于m的方程,求出m的值后,进一步即可求得答案.【详解】解:设点D(m,),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,如图所示:∵∠GDC+∠DCG=90°,∠GDC+∠HDA=90°,∴∠HDA=∠GCD,又AD=CD,∠DHA=∠CGD=90°,∴△DHA≌△CGD(AAS),∴HA=DG,DH=CG,同理△ANB≌△DGC(AAS),∴AN=DG=1=AH,则点G(m,﹣1),CG=DH,AH=﹣1﹣m=1,解得:m=﹣2,故点G(﹣2,﹣5),D(﹣2,﹣4),H(﹣2,1),则点E(﹣,﹣5),GE=,CE=CG﹣GE=DH﹣GE=5﹣=,故选:B.【点睛】本题考查了正方形的性质、反比例函数图象上点的坐标特点和全等三角形的判定与性质,构造全等、充分运用正方形的性质是解题的关键.7.如图直线y=mx与双曲线y=交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=2S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=2S△AOM=2,S△AOM=|k|=1,则k=±2.又由于反比例函数图象位于一三象限,k>0,所以k=2.故选B.【点睛】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.8.在平面直角坐标系中,函数的图象与直线:交于点,与直线:交于点,直线与交于点,记函数的图象在点、之间的部分与线段,线段围城的区域(不含边界)为,当时,区域的整点个数为()A.3个 B.2个 C.1个 D.没有【答案】D【解析】【分析】根据解析式画出函数图象,根据图形W得到整点个数进行选择.【详解】∵,过整点(-1,-2),(-2,-1),当b=时,如图:区域W内没有整点,当b=时,区域W内没有整点,∴时图形W增大过程中,图形内没有整点,故选:D.【点睛】此题考查函数图象,根据函数解析式正确画出图象是解题的关键.9.如图,的顶点的坐标分别是,顶点在双曲线上,边交轴于点,且四边形的面积是面积的倍,则的值为:()A. B. C. D.【答案】A【解析】【分析】过D作DF//轴,过C作轴,交点为,利用平行四边形的性质证明利用平移写好的坐标,由四边形的面积是面积的倍,得到利用中点坐标公式求横坐标,再利用反比例函数写的坐标,列方程求解.【详解】解:过D作DF//轴,过C作轴,交点为,则,的两边互相平行,,设由结合平移可得:,四边形的面积是面积的倍,,,由中点坐标公式知:,,,故选A.【点睛】本题考查的是反比例函数的图像与性质,平行四边形的性质,平移性质,中点坐标公式,掌握以上知识点是解题关键.10.函数与()在同一平面直角坐标系中的大致图象是()A. B. C. D.【答案】C【解析】【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交

y轴于负半轴,y

随着x的增大而增大,A选项错误,C选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y轴于正半轴,y

随着x的增大而增减小,B.

D均错误,

故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.11.若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3 B.y3>y2>y1 C.y2>y1>y3 D.y1>y3>y2【答案】C【解析】【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【详解】∵点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数的图象上,∴,,,又∵﹣<<,∴y3<y1<y2,故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟知反比例函数图象上的点的坐标满足反比例函数的解析式是解题的关键.12.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数、的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变【答案】D【解析】【分析】如图,作辅助线;首先证明△BEO∽△OFA,,得到;设B为(a,),A为(b,),得到OE=-a,EB=,OF=b,AF=,进而得到,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=为定值,即可解决问题.【详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△OFA,∴,设点B为(a,),A为(b,),则OE=-a,EB=,OF=b,AF=,可代入比例式求得,即,根据勾股定理可得:OB=,OA=,∴tan∠OAB===∴∠OAB大小是一个定值,因此∠OAB的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.13.使关于x的分式方程=2的解为非负数,且使反比例函数y=图象过第一、三象限时满足条件的所有整数k的和为().A.0B.1C.2D.3【答案】B【解析】试题分析:分别根据题意确定k的值,然后相加即可.∵关于x的分式方程=2的解为非负数,∴x=≥0,解得:k≥-1,∵反比例函数y=图象过第一、三象限,∴3﹣k>0,解得:k<3,∴-1≤k<3,整数为-1,0,1,2,∵x≠0或1,∴和为-1+2=1,故选,B.考点:反比例函数的性质.14.如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y=(x>0)的图象与线段AB相交于点C,且C是线段AB的中点,若△OAB的面积为3,则k的值为()A. B.1 C.2 D.3【答案】D【解析】【分析】连接OC,如图,利用三角形面积公式得到S△AOC=S△OAB=,再根据反比例函数系数k的几何意义得到|k|=,然后利用反比例函数的性质确定k的值.【详解】连接OC,如图,∵BA⊥x轴于点A,C是线段AB的中点,

∴S△AOC=S△OAB=,而S△AOC=|k|,∴|k|=,而k>0,

∴k=3.

故选:D.【点睛】此题考查反比例函数系数k的几何意义,解题关键在于掌握在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.15.如图,已知点,分别在反比例函数和的图象上,若点是线段的中点,则的值为().A. B.8 C. D.【答案】A【解析】【分析】设A(a,b),则B(2a,2b),将点A、B分别代入所在的双曲线解析式进行解答即可.【详解】解:设A(a,b),则B(2a,2b),∵点A在反比例函数的图象上,∴ab=−2;∵B点在反比例函数的图象上,∴k=2a•2b=4ab=−8.故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.16.如图,若点M是轴正半轴上任意一点,过点M作PQ∥轴,分别交函数和的图象于点P和Q,连接OP和OQ.则下列结论正确的是()A.∠POQ不可能等于90° B.C.这两个函数的图象一定关于轴对称 D.△POQ的面积是【答案】D【解析】【分析】【详解】解:根据反比例函数的性质逐一作出判断:A.∵当PM=MO=MQ时,∠POQ=90°,故此选项错误;B.根据反比例函数的性质,由图形可得:>0,<0,而PM,QM为线段一定为正值,故,故此选项错误;C.根据,的值不确定,得出这两个函数的图象不一定关于轴对称,故此选项错误;D.∵||=PM•MO,||=MQ•MO,∴△POQ的面积=MO•PQ=MO(PM+MQ)=MO•PM+MO•MQ=.故此选项正确.故选D.17.如图,若直线与轴交于点,与双曲线交于点,则的面积为()A.6 B.5 C.3 D.1.5【答案】C【解析】【分析】先根据题意求出A点坐标,再求出一次函数解析式,从而求出B点坐标,则问题可解.【详解】解:由已知直线与轴交于点,与双曲线交于点∴则m=-2把A(-2,1)代入到,得∴n=-3∴则点B(0,-3)∴的面积为故应选:C【点睛】本题考查的是反比例函数与一次函数的综合问题,解题关键是根据题意应用数形结合思想.18.如图,点,是双曲线图象上的两点,连接,线段经过点,点为双曲线在第二象限的分支上一点,当满足且时,的值为().A. B. C. D.【答案】B【解析】【分析】如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.首先证明△CFO∽△OEA,推出,因为CA:AB=13:24,AO=OB,推出CA:OA=13:12,推出CO:OA=5:12,可得出=,因为S△AOE=9,可得S△COF=,再根据反比例函数的几何意义即可解决问题.【详解】解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.∵A、B关于原点对称,∴OA=OB,∵AC=BC,OA=OB,∴OC⊥AB,∴∠CFO=∠COA=∠AEO=90°,∴∠COF+∠AOE=90°,∠AOE+∠EAO=90°,∴∠COF=∠OAE,∴△CFO∽△OEA,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论