2023历年电大2023专科统计学原理计算题试题及答案_第1页
2023历年电大2023专科统计学原理计算题试题及答案_第2页
2023历年电大2023专科统计学原理计算题试题及答案_第3页
2023历年电大2023专科统计学原理计算题试题及答案_第4页
2023历年电大2023专科统计学原理计算题试题及答案_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本文格式为Word版,下载可任意编辑——2023历年电大2023专科统计学原理计算题试题及答案历年电大专科统计学原理计算题试题及答案

计算题

1.某单位40名职工业务考核成绩分别为:

688988848687757372687582975881547976957671609065767276858992

64578381787772617081

单位规定:60分以下为不及格,60─70分为及格,70─80分为中,80─90分为良,90─100分为优。要求:

(1)将参与考试的职工按考核成绩分为不及格、及格、中、良、优五组并编制一张考核成绩次数分派表;

(2)指出分组标志及类型及采用的分组方法;

(3)分析本单位职工业务考核状况。解:(1)成绩职工人数频率(%)60分以下60-70

70-8080-9090-100

合计3615124407.51537.53010100(2)分组标志为\成绩\其类型为\数量标志\;分组方法为:变量分组中的开放组距式分组,组限表示方法是重叠组限;

(3)本单位的职工考核成绩的分布呈两头小,中间大的\正态分布\的形态,说明大多数职工对业务知识的把握达到了该单位的要求。

2.2023年某月份甲、乙两农贸市场农产品价格和成交量、成交额资料如下品种价格(元/斤)甲市场成交额(万元)乙市场成交量(万斤)甲乙丙合计1.21.41.5—1.22.81.55.52114试问哪一个市场农产品的平均价格较高?并说明原因。

解:

甲市场乙市场价格(元)品种成交额成交量成交量成交额Xmm/xfxf甲乙丙合计1.21.41.5—1.22.81.55.5121421142.41.41.55.3解:先分别计算两个市场的平均价格如下:

甲市场平均价格X??m5.5??1.375(元/斤)

??m/x?4乙市场平均价格X??xf?5.3?1.325(元/斤)?f4说明:两个市场销售单价是一致的,销售总量也是一致的,影响到两个市场

平均价格高低不同的原因就在于各种价格的农产品在两个市场的成交量不

同。

3.某车间有甲、乙两个生产组,甲组平均每个工人的日产量为36件,标准差为9.6件;乙组工人日产量资料如下:

日产量(件)15253545工人数(人)15383413要求:⑴计算乙组平均每个工人的日产量和标准差;

⑵比较甲、乙两生产小组哪个组的日产量更有代表性?解:(1)

xf?X??f?15?15?25?38?35?34?45?13?29.50(件)

1002???(x?X)?f?X??f?8.986(件)

(2)利用标准差系数进行判断:

V甲?V乙?9.6?0.267368.986?0.30529.5?X由于0.305>0.267

故甲组工人的平均日产量更有代表性。

4.某工厂有1500个工人,用简单随机重复抽样的方法抽出50个工人作为样本,调查其月平均产量水平,资料如下:

日产量(件)工人数(人)524534540550560580600660469108643要求:(1)计算样本平均数和抽样平均误差(重复与不重复)

(2)以95.45%的可靠性估计该厂工人的月平均产量和总产量的区间。

解:(1)样本平均数X??xf?f?560

样本标准差???(x?X)?f?2f?1053

重复抽样:?x?n?105350?4.59

不重复抽样:?x??2n1053250(1?)?(1?nN501500(2)抽样极限误差?x?t?x=2×4.59=9.18件

总体月平均产量的区间:下限:x?△x=560-9.18=550.82件

上限:x?△x=560+9.18=569.18件

总体总产量的区间:(550.82×1500826230件;569。18×1500853770

件)

5.采用简单随机重复抽样的方法,在2000件产品中抽查200件,

其中合格品190件.要求:(1)计算合格品率及其抽样平均误差

(2)以95.45%的概率保证程度(t=2)对合格品率和合格品数量进行区间估计。

(3)假使极限误差为2.31%,则其概率保证程度是多少?解:(1)样本合格率

p=n1/n=190/200=95%抽样平均误差?p?p(1?p)=1.54%n(2)抽样极限误差Δp=t·μp=2×1.54%=3.08%下限:x?△p=95%-3.08%=91.92%上限:x?△p=95%+3.08%=98.08%

则:总体合格品率区间:(91.92%98.08%)

总体合格品数量区间(91.92%×2000=1838件98.08%×2000=1962件)

(3)当极限误差为2.31%时,则概率保证程度为86.64%(t=Δ/μ)6.某企业上半年产品产量与单位成本资料如下:月份产量(千件)单位成本(元)123456

234345737271736968要求:(1)计算相关系数,说明两个变量相关的密切程度。

(2)协同回归方程,指出产量每增加1000件时,单位成本平均变动多少?

(3)假定产量为6000件时,单位成本为多少元

解:计算相关系数时,两个变量都是随机变量,

不须区分自变量和因变量。考虑到要配和合回归方程,所以这里设产量为自变量(x),单位成本为因变量(y)

月份产量(千件)单位成本(元)2xnxy123456合计23434521737271736968426491691625y2532951845041532947614624xy14621628421927634079302681481(1)计算相关系数:???n?xn?xy??x?y2?(?x)n?y?(?y)22??2?

?6?1481?21?426?6?79?21??6?30268?426???0.9091

???0.9091说明产量和单位成本之间存在高度负相关。

(2)协同回归方程y=a+bxb?n?xy??x?yn?x?(?x)22=-1.82

a?y?bx=77.37

回归方程为:y=77.37-1.82x

产量每增加1000件时,单位成本平均减少1.82元

(3)当产量为6000件时,即x=6,代入回归方程:y=77.37-1.82×6=66.45(元)

7.根据企业产品销售额(万元)和销售利润率(%)资料计算出如下数据:

n=7?x=1890?y=31.1?x=535500?y=174.15?xy=9318

2

2

要求:(1)确定以利润率为因变量的直线回归方程.(2)解释式中回归系数的经济含义.

(3)当销售额为500万元时,利润率为多少?解:(1)协同直线回归方程:y=a+bx

119318??1890?31.1?x?yn7b===0.03651122535500??18902?x???x?n7?xy?a=y?bx???1111?y?b?x=?31.1?0.0365??1890=-5.41

77nn则回归直线方程为:yc=-5.41+0.0365x

(2)回归系数b的经济意义:当销售额每增加一万元,销售利润率增加0.0365%

(3)计算预计值:

当x=500万元时yc=-5.41+0.0365?500=12.8%

8.某商店两种商品的销售资料如下:

商品单位甲件销售量5060单价(元)810基期计算期基期计算期乙公斤1501601214要求:(1)计算两种商品销售额指数及销售额变动的绝对额;

(2)计算两种商品销售量总指数及由于销售量变动影响销售额的绝对额;(3)计算两种商品销售价格总指数及由于价格变动影响销售额的绝对额。

解:(1)商品销售额指数=

?pq?pq0110?10?60?14?1602840??129.09%

8?50?12?1502200销售额变动的绝对额:?p1q1??p?q???????????????元(

=

2

010两种商品销售量总指数

?pq?pq0?8?60?12?1602400??109.09%

22023200销售量变动影响销售额的绝对额?p?q1??p?q???????????????元

p?q1?(3)商品销售价格总指数=

?p?q??????????????????价格变动影响销售额的绝对额:?p?q1??p?q???????????????元

9.某商店两种商品的销售额和销售价格的变化状况如下:

商品单位甲乙米件销售额(万元)1996年比1995年1995年1996年销售价格提高(%)12040130361012要求:(1)计算两种商品销售价格总指数和由于价格变动对销售额的影响绝对额。

(2)计算销售量总指数,计算由于销售量变动,消费者增加(减少)的支

出金额。

pq?解:(1)商品销售价格总指数=

1?kpq11?11130?36166??110.43%

13036150.33?1.11.12由于价格变动对销售额的影响绝对额:

?p1q1??1p1q1?166?150.32?15.67万元k(2)计算销售量总指数:

pq?商品销售价格总指数=

1?kpq1111pq??1?ppq11111pq???pq1101

p0而从资料和前面的计算中得知:

?pq00?160

?pq01?150.32

pq?所以:商品销售量总指数=

?pq0010?150.33?93.35%,160由于销售量变动,消费者增加减少的支出金额:

?pq-?pq1101?150.33?160??9.67

10.已知两种商品的销售资料如表:

品名单位电视自行车合计要求:台辆-销售额(万元)2023年比2023年2023年2023年销售量增长(%)500045009500888042001308023-7-(1)计算销售量总指数;

(2)计算由于销售量变动,消费者增加(减少)的支出金额。

(3)计算两种商品销售价格总指数和由于价格变动对销售额的影响绝对

额。

解:(1)销售量总指数

???pq?p0000?1.23?5000?0.93?4500??????????????

5000?4500????(2)由于销售量变动消费者多支付金额

???qp?q???p?q?=10335-9500=835(万元)

(3)计算两种商品销售价格总指数和由于价格变动对销售额的影响绝对

额。

参见上题的思路。通过质量指标综合指数与调和平均数指数公式之间的

关系来得到所需数据。

11.某地区1984年平均人口数为150万人,1995年人口变动状况如下:

月份月初人数1102369192次年1月184185190计算:(1)1995年平均人口数;

(2)1984-1995年该地区人口的平均增长速度.

a?a3a?ana1?a2f1?2f2???n?1fn?1222解:(1)1995年平均人口数a?

f?=181.38万人

(2)1984-1995年该地区人口的平均增长速度:

x?nan181.38?11?1?1.74%a01501995年1996年1997年1998年1999年12.某地区1995—1999年粮食产量资料如下:

年份粮食产量(万斤)展速度;

434472516584618要求:(1)计算各年的逐期增长量、累积增长量、环比发展速度、定基发(2)计算1995年-1999年该地区粮食产量的年平均增长量和粮食产量的年平均发展速度;

(3)假使从1999年以后该地区的粮食产量按8%的增长速度发展,2023年该地区的粮食产量将达到什么水平?解:(1)年份粮食产量(万斤)环比发展速度定基发展速度逐期增长量累积增长量1995年434----1996年1997年1998年1999年472108.76108.763838516109.32118.894482584618113.18105.82134.56142.406834150184平均增长量=

an?a0184??46(万斤)

n?15?1平均增长量?逐期增长量之和38?44?68?34??46(万斤)

逐期增长量个数4(2)平均发展速度x?nnan618?4?109.24%(3)a0434an?a0.x?618?1.086=980.69(万斤)

13、甲生产车间30名工人日加工零件数(件)如下:

3026424136444037372545294331363649344733433842323438

46433935

要求:(1)根据以上资料分成如下几组:25-30,30-35,35-40,40-45,45-50

计算出各组的频数和频率,整理编制次数分布表。

(2)根据整理表计算工人生产该零件的平均日产量和标准差。

解:(1)次数分派表如下:

按加工零件数分25—3030—3535—4040—4545—50合计人数(人)3698430比率(%)10203026.6713.33100x?(2)

?xf?f=(27.5*3+32.5*6+37.5*9+42.5*8+47.5*4)/30=38.17(件)

2??如下:

??x?x?f?f=5.88(件)

14.2023年某月份甲、乙两农贸市场农产品价格和成交量、成交额资料品种价格(元/斤)甲市场成交额(万元)乙市场成交量(万斤)甲乙丙1.21.41.51.22.81.55.52114合计—试问哪一个市场农产品的平均价格较高?并说明原因。

x?解:甲市场的平均价格:

?m?mx=5.5/4=1.375(元/斤)

=5.3/4=1.325(元/斤)

xf?x??f乙市场的平均价格:

原因:甲市场价格高的成交量大,影响了平均价格偏高。这是权数在

这里起到权衡轻重的作用。

15.某车间有甲、乙两个生产组,甲组平均每个工人的日产量为36件,

标准差为9.6件;乙组工人日产量资料如下:

日产量(件)10——2020——3030——4040——50工人数(人)15383413要求:⑴计算乙组平均每个工人的日产量和标准差;

⑵比较甲、乙两生产小组哪个组的日产量更有代表性?

x?解:乙小组的平均日产量

乙小组的标准差乙小组

9.6/36=26.67%

?xf?f=2950/100=29.5(件/人)

2????x?x?f?f=8.98(件/人)

V???x=9.13/28.7=30.46%甲小组V???x=

所以标准差系数较小的甲小组工人的平均日产量更具有代表性。16.某工厂有1500个工人,用简单随机抽样的方法抽出50个工人作为

样本,调查其月平均产量水平,

资料如下:

日产量(件)52453454055056058060066069108643工人数(人)4要求:(1)计算样本平均数和抽样平均误差(重复和不重复)

(2)以95.45%的可靠性估计该厂工人的月平均产量和总产量的区间。

x?解:(1)平均日产量标准差

?xf?f2=560(件/人)

????x?x?f?f=32.45(件/人)

?x?重复抽样抽样误差:

?n=4.59(件/人)

?x?不重复抽样抽样误差:(2)极限误差:

?2?n??1??n?N?=4.51(件/人)

?x?t?x、t=2;估计范围:

?x?x?X?X?x??x,x??x??

该厂月平均产量区间范围分别为[550.82,569.18]和[550.98,569.02]该厂总产量范围分别为[826230,853770]和[826470,853530]

17.采用简单随机重复抽样的方法,在2000件产品中抽查200件,其中合

格品190件.

要求:(1)计算合格品率95%及其抽样平均误差。

(2)以95.45%的概率保证程度(t=2)对合格品率和合格品数量进行区间

估计。

解:(1)P=95%,

(2)

?p?p?1?p?n=1.54%

?p?t?p、t=2;

?p?p?P?P?p??p,p??p??

合格品率范围[91.92%,98.08%],合格品数量范围[1839,1962]

18.某企业上半年产品产量与单位成本资料如下:

月份产量(千件)单位成本(元)123456234345737271736968要求:(1)计算相关系数,说明两个变量相关的密切程度。

(2)协同回归方程,指出产量每增加1000件时,单位成本平均变动多

少?

(3)假定产量为6000件时,单位成本为多少元?

解:(1)设产量为自变量x,单位成本为因变量y,产量(千件)x单位成本(元)yx2y2234345合计:21

所需合计数如下:

737271736968426499532951845329xy14621628421927634016504116476125462479302681481?xy=1481?x2yx=79?=21?2=30268

?y=426

???n?xn?xy??x?y2???x?n?y2???y?2??2?=-0.909,为高度负相

关。

(2)①建立直线回归方程:令y=a+bx;

a?y?bx,b?②所以

n?xy??x?yn?x2???x?2b=-1.82a=77.36元;

③回归方程为:y=77.36-1.82x

当产量每增加1000件时,单位成本平均减少1.82元。

(3)预计产量为6000件时单位成本:y=77.36-1.82×6=66.44(元)19.某企业生产两种产品的资料如下:产品甲乙单位件公斤产量基期5015060160单位成本(元)计算期基期812计算期1014要求:(1)计算两种产品总成本指数及总成本变动的绝对额;

(2)计算两种产品产量总指数及由于产量变动影响总成本的绝对额;(3)计算两种产品单位成本总指数及由于单位成本影响总成本的绝对额。

pq?K??pq解:(1)总成本指数

0110=129.09%,

?pq??pq11001000=640

Kq?(2)产量总指数

?pq?pq0010=109.09%,

1101?pq??pq11=200

Kp(3)单位成本总指数

pq???pq=118.33%,

?pq??pq=440

0120、某企业生产三种产品的有关资料如下:产品总生产费用(万元)报告期比基期产量增长(%)名称基期报告期甲乙丙50455045404815125试计算三种产品的产量总指数及由于产量变动而增加的总生产费用。

Kq解:产量总指数

kpq???p0000=160.4/145=110.62%,

由于产量变动而增加的总生产费用21、某工业企业资料如下:

指标?kqp0q0??p0q0=15.4(万元)

六月七月八月九月

工业总产值(万元)180月末工人数(人)600160580200620190600试计算:(1)第三季度月平均劳动生产率;(2)第三季度平均劳动生产率。解:(1)三季度月平均劳动生产率:

ana?c??b(b0?b?????bn)n122

=550/1800=0.306(万元/人)

(2)三季度平均劳动生产率=3×0.306=0.92(万元/人)22、某百货公司各月商品销售额及月末库存资料如下:

销售额库存额3月180464月260655月280556月29676计算其次季度平均每月商品流转次数和其次季度商品流转次数。解:(1)二季度月平均商品流转次数:

ana?c??b(b0?b?????bn)n122

=836/181=4.62(次)

(2)二季度平均商品流转次数=3×4.62=13.86(次)

23.某地区1984年平均人口数为150万人,1995年人口变动状况如下:

月份1369次年1月月初人数102185190192184计算:(1)1995年平均人口数;

(2)1984-1995年该地区人口的平均增长速度.

(a?a3)(a?an)(a1?a2)f1?2f2???n?1fn?1222a?f1?f2???fn?1解:(1)=181.21(万人)

x?1?n(2)

an?1?11181.21/150?1a0=1.73%

24.某地区历年粮食产量资料如下:

年份1995年1996年1997年1998年1999年472560450700粮食产量(万斤)300要求:(1)计算各年的逐期增长量、累积增长量、环比发展速度、定基发展速度;(2)计算1995年-1999年该地区粮食产量的年平均增长量和粮食产量的年平均发展速度;

(3)假使从1999年以后该地区的粮食产量按8%的增长速度发展,2023年该地区的粮食产量将达到什么水平?解:(1)

年份粮食产量增长量19951996199719981999300472逐期-累积-定基-1721725608826045070090250150400发展速度(%)环比-157.33118.6480.36155.56157.33186.67150233.33(2)年平均增长量=(700-300)/4=100(万斤)

a?n平均发展速度=

ana0?4700300=123.59%

n6a?a?x?700?1.0820230(3)=1110.81(万斤)

25.根据所给资料分组并计算出各组的频数和频率,编制次数分布表;根据整理表计算算术平均数。如:

某生产车间40名工人日加工零件数(件)如下:

30373338

26254346

42453843

41294239

36433235

44312540

40363048

37494633

43342927

35473428

要求:(1)根据以上资料分成如下几组:25~30,30~35,35~40,40~45,45~50。计算各组的频数和频率,编制次数分布表。

(2)根据整理表计算工人的平均日产零件数。

解:(1)将原始资料由低到高排列:

25252627282929303031323333343435353636373738383940404142424343434344454646474849

编制变量数列:按日产量分组(件)25~3030~3535~4040~4545~50合计(2)平均日产量=

工人数(人)各组工人所占比重(%)717.5820.0922.51025.0615.040100.0总产量?xf27.5?7?32.5?8?37.5?9?42.5?10?47.5?6===37.5(件/人)

40工人人数?f26.根据资料计算算术平均数指标、计算变异指标比较平均指标的代表性。如:某车间有甲、乙两个生产组,甲组平均每个工人的日产量为36件,标准差为9.6

件;乙组工人日产量资料如下:

日产量(件)工人数(人)1525354515383413要求:(1)计算乙组平均每个工人的日产量和标准差;

(2)比较甲、乙两生产小组哪个组的平均日产量更有代表性?

xf解:(1)X???15?15?25?38?35?34?45?13?29.50(件)

100?f???(x?X)?f2f?8.986(件)

(2)利用标准差系数进行判断:

?9.6V甲???0.267

X36?8.986V乙???0.305

X29.5由于0.305>0.267

故甲组工人的平均日产量更有代表性。

27.采用简单重复抽样的方法计算平均数(成数)的抽样平均误差;根据要求进行平均数(成数)的区间估计。如:

第一种例题:某工厂有1500个工人,用简单随机重复抽样的方法抽出50个工人作为样本,调查其月平均产量水平,资料如下:日产量(件)524534540550560580600660工人数(人)469108643要求:(1)计算样本平均数和抽样平均误差(重复与不重复)。(2)以95.45%的可靠性估计该厂工人的月平均产量和总产量的区间。解:(1)样本平均日产量x=?x

f

=560(件)?f

?32.45??4.59(件)重复抽样:?x?n50不重复抽样:?x??2n32..45250(1?)?(1?)?4.51(件)nN501500(2)以95.45%的可靠性估计t=1.96

抽样极限误差?x?t?x=1.96×4.59=9(件)

月平均产量的区间:下限:x?△x=560-9=551(件)

上限:x?△x=560+9=569(件)

以95.45%的可靠性估计总产量的区间:(551×1500=826500件;569×1500

=853500件)

其次种例题:采用简单随机重复抽样的方法,在2000件产品中抽查200件,其中合格品190件。要求:(1)计算合格品率及其抽样平均误差

(2)以95.45%的概率保证程度(t=2)对合格品率和合格品数量进行区间估计。

(3)假使极限误差为2.31%,则其概率保证程度是多少?解:(1)样本合格率

p=n1/n=190/200=95%抽样平均误差?p?p(1?p)=1.54%n(2)抽样极限误差Δp=t·μp=2×1.54%=3.08%

下限:x?△p=95%-3.08%=91.92%

上限:x?△p=95%+3.08%=98.08%

则:总体合格品率区间:(91.92%98.08%)

总体合格品数量区间(91.92%×2000=1838件98.08%×2000=1962件)(3)当极限误差为2.31%时,则概率保证程度为86.64%(t=Δ/μ)28.计算相关系数;建立直线回归方程并指出回归系数的含义;利用建立的方程预计因变量的估计值。如:

某企业今年上半年产品产量与单位成本资料如下:

月份产量(千件)单位成本(元)127323723471437354696568要求:(1)计算相关系数,说明两个变量相关的密切程度。(2)协同回归方程,指出产量每增加1000件时,单位成本平均变动多少?

(3)假定产量为6000件时,单位成本为多少元?解:计算相关系数时,两个变量都是随机变量,

不须区分自变量和因变量。考虑到要配和合回归方程,所以这里设产量为自变量(x),单位成本为因变量(y)月份产量(千件)单位成本(元)22xyxynxy

127345329146237295184216347116504128443739532921954691647612766568254624340合计2142679302681481(1)计算相关系数:????n?xn?xy??x?y2?(?x)n?y?(?y)22??2?

6?1481?21?426?6?79?21??6?30268?426?n?xy??x?yn?x?(?x)22??0.9091

???0.9091说明产量和单位成本之间存在高度负相关。(2)协同回归方程y=a+bxb?=-1.82

a?y?bx=77.37

回归方程为:y=77.37-1.82x

产量每增加1000件时,单位成本平均减少1.82元

(3)当产量为6000件时,即x=6,代入回归方程:y=77.37-1.82×6=66.45(元)

29.计算总指数、数量指数及质量指数并同时指出变动绝对值、计算平均数指数。如:某商店两种商品的销售额和销售价格的变化状况如下:销售额(万元)2023年比2023年商品单位2023年2023年销售价格提高(%)甲米12013010乙件403612要求:(1)计算两种商品销售价格总指数和由于价格变动对销售额的影响绝对额。(2)计算销售量总指数,计算由于销售量变动,消费者增加(减少)的支出金额。

pq?解:(1)商品销售价格总指数=

1?kpq11?11130?36166??110.43%

13036150.33?1.11.12由于价格变动对销售额的影响绝对额:

?p1q1??1p1q1?166?150.32?15.67(万元)k(2)计算销售量总指数:

商品销售价格总指数=

?pq1?kpq11?11?pq1?ppq111?11?pq?pq1101

p0而从资料和前面的计算中得知:

01?pq100?160(万元)

?pq?150.32(万元)

?pq?150.33?93.35%

所以:商品销售量总指数=

?pq160000由于销售量变动,消费者增加减少的支出金额=

?pq-?pq1101?150.33?160??9.67(万元)

30.根据资料计算各种发展速度(环比、定基)及平均增长量指标;根据资料利用平均发展速度指标公式计算期末水平。如:

某地区历年粮食产量资料如下:

年份粮食产量(万斤)2023年2023年2023年2023年2023年434472516584618要求:(1)计算各年的逐期增长量、累积增长量、环比发展速度、定基发展速度;(2)计算2023年-2023年该地区粮食产量的年平均增长量和粮食产量的年

平均发展速度;

(3)假使从2023年以后该地区的粮食产量按8%的增长速度发展,2023年该

地区的粮食产量将达到什么水平?

解:(1)年份20232023年2023年2023年2023年年粮食产量(万斤)环比发展速度(%)定基发展速度(%)逐期增长量(万斤)累积增长量(万斤)平均增长量=

434----472.00516.00584.00618.00108.76109.32113.18105.82108.76118.89134.56142.4038.0044.0068.0034.0038.0082.00150.00184.00an?a0184??46(万斤)

n?15?1逐期增长量之和38?44?68?34平均增长量???46(万斤)

逐期增长量个数4(2)平均发展速度x?nan618?4?109.24%(3)a0434an?a0.x?618?1.086=980.69(万斤)

31.某单位40名职工业务考核成绩分别为:

68898884868775737268

7582975881547976957671609065767276858992

64578381787772617081

单位规定:60分以下为不及格,60─70分为及格,70─80分为中,80─90分为良,90─100分为优。

要求:

(1)将参与考试的职工按考核成绩分为不及格、及格、中、良、优五组并编制一张考核成绩次数分派表;

(2)指出分组标志及类型及采用的分组方法;(3)分析本单位职工业务考核状况。解:(1)

n成绩60分以下60-70

70-8080-9090-100

合计

职工人数361512440频率(%)7.515.037.530.010.0100.0(2)分组标志为\成绩\其类型为\数量标志\;分组方法为:变量分组中的开放组距式分组,组限表示方法是重叠组限;

(3)本单位的职工考核成绩的分布呈两头小,中间大的\正态分布\的形态,说明大多数职工对业务知识的把握达到了该单位的要求。

32.某自行车公司下属20个企业,2023年甲种车的单位成本分组资料如下:甲种车单位成本(元企业数(个)各组产量占总产量的比/辆)重(%)200-5402201245220-315240240-260试计算该公司2023年甲种自行车的平均单位成本。解:

甲种车单位成本(元组中值(x)企业各组产量占总x.f/∑f/辆)(元/辆)数产量的(元/(个)比重(%)(f/∑辆)f)200-22021054084.0220-2402301245103.5240-26025031537.5合计—20100225.0平均单位成本=

总成本f=?x=225(元/辆)

总产量?f

33.某月某企业按工人劳动生产率高低分组的生产班组数和产量资料如下:

按工人劳动生产率组中值(x)产量(m)分组(件/人)50-6060-7070-8080-9090以上试计算该企业工人平均劳动生产率。解:列计算表如下:

按工人劳动生产率组中值(x)产量(m)人数(m/x)分组(件/人)50-6060-7070-8080-9090以上合计工人平均劳动生产率x?(件/人)5565758595—(件)8250650052502550152024070(人)150100703016366(件/人)5565758595(件)82506500525025501520

?m?24070?66(件/人)m366?x甲市场成交额乙市场成交量(万元)(万斤)34.2023年6月份甲、乙两农贸市场农产品价格和成交量、成交额资料如下:

品种价格(元/斤)

甲乙丙合计1.21.41.5—1.22.81.55.52114试问哪一个市场农产品的平均价格较高?并说明原因。

解:

甲市场品种甲乙丙乙市场价格(元)成交额成交量成交量成交额(x)(m)(m/x)(f)(xf)1.21.41.51.22.81.55.5121421142.41.41.55.3合计—

解:先分别计算两个市场的平均价格如下:

?m5.5??1.375(元/斤)

??m/x?4乙市场平均价格X??xf?5.3?1.325(元/斤)

?f4说明:两个市场销售单价是一致的,销售总量也是一致的,影响到两个市场平均价格高低不同的原因就在于各种价格的农产品在两个市场的成交量不同,价格较低的甲品种,乙市场成交量是甲市场的2倍,价格较高的乙品种,甲市场成交量是乙市场的2倍,所以甲市场平均价格比乙市场平均价格高。

甲市场平均价格X?35.从某年级学生中按简单随机抽样方式抽取40名学生,对统计学原理课的考试成绩进行检查,得知其平均分数为78.75分,样本标准差为12.13分,试以95.45%的概率保证程度推断全年级学生考试成绩的区间范围。假使其它条件不变,将允许误差缩小一半,应抽取多少名学生?

解:n=40x=78.56σ=12.13t=2(1)?x??n=

12.1340?1.92(分)

△x=tμx=2×1.92=3.84(分)

全年级学生考试成绩的区间范围是:x-△x≤X≤x+△x78.56-3.84≤X≤78.56+3.8474.91≤X≤82.59

(2)将误差缩小一半,应抽取的学生数为:

22??12.13?n???160(人)23.84?()2(x)22t2?22

36.根据企业产品销售额(万元)和销售利润率(%)资料计算出如下数据:

22

n=7?x=1890?y=31.1?x=535500?y=174.15?xy=9318

要求:(1)确定以利润率为因变量的直线回归方程.(2)解释式中回归系数的经济含义.

(3)当销售额为500万元时,利润率为多少?解:(1)协同直线回归方程:y=a+bx

?xy?119318??1890?31.1?x?y7nb===0.0365

1122

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论