畸变电网下PWM整流器鲁棒预测控制研究_第1页
畸变电网下PWM整流器鲁棒预测控制研究_第2页
畸变电网下PWM整流器鲁棒预测控制研究_第3页
畸变电网下PWM整流器鲁棒预测控制研究_第4页
畸变电网下PWM整流器鲁棒预测控制研究_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

畸变电网下PWM整流器鲁棒预测控制研究摘要:畸变电网在现代工业生产中广泛存在,其复杂性和不稳定性对电力系统的稳定运行产生了深远影响。针对畸变电网下PWM整流器的鲁棒控制问题,本文提出了一种基于预测控制的解决方案。首先,通过建立畸变电网下PWM整流器的动态数学模型,利用基于神经网络的系统辨识技术进行参数辨识,建立了一个能够准确反映畸变电网特性的系统模型。然后,采用基于RBF神经网络的预测控制算法进行预测和控制,利用控制器对PWM整流器进行鲁棒性调节,实现了对畸变电网下PWM整流器的鲁棒控制。最后,通过仿真实验验证了该预测控制算法的可行性和有效性。

关键词:畸变电网;PWM整流器;鲁棒控制;预测控制;RBF神经网络

Abstract:Distortedpowergridhasbeenwidelyexistinmodernindustrialproduction,anditscomplexityandinstabilityhaveprofoundimpactonthestableoperationofpowersystem.InordertosolvetherobustcontrolproblemofPWMrectifierunderdistortedpowergrid,thispaperproposesasolutionbasedonpredictivecontrol.Firstly,byestablishingthedynamicmathematicalmodelofPWMrectifierunderdistortedpowergrid,usingthesystemidentificationtechnologybasedonneuralnetworkforparameteridentification,weestablishedasystemmodelthatcanaccuratelyreflectthecharacteristicsofdistortedpowergrid.Then,thepredictivecontrolalgorithmbasedonRBFneuralnetworkisusedforpredictionandcontrol,andthecontrollerisusedtoadjusttherobustnessofPWMrectifier,realizingtherobustcontrolofPWMrectifierunderdistortedpowergrid.Finally,thefeasibilityandeffectivenessofthepredictivecontrolalgorithmareverifiedbysimulationexperiments.

Keywords:Distortedpowergrid;PWMrectifier;Robustcontrol;Predictivecontrol;RBFneuralnetworInrecentyears,theuseofpowerelectronics-basedsystemssuchasPWMrectifiershasincreasedrapidlyduetotheirhighefficiencyandexcellentperformance.However,theoperationofsuchsystemsinadistortedpowergridcancausesignificantchallenges.Thedistortioninthepowergridcanresultinseveralissuessuchasreducedpowerquality,decreasedsystemefficiency,andeveninstability.Therefore,therobustcontrolofPWMrectifiersunderdistortedpowergridconditionshasbecomeanimportantresearchtopic.

Toaddressthischallenge,apredictivecontrolalgorithmbasedonRBFneuralnetworkisproposedinthisstudy.ThealgorithmutilizestheRBFneuralnetworktopredicttheoutputvoltageandcurrentofthePWMrectifierunderdifferentoperatingconditions.ThepredictedvaluesarethenusedbythecontrollertoadjusttherobustnessofthePWMrectifier.ThecontrolobjectiveistomaintainthedesiredoutputvoltageandcurrentofthePWMrectifierunderdistortedpowergridconditions.

Theproposedalgorithmwastestedthroughsimulationexperiments.TheresultsshowedthatthealgorithmwasabletoeffectivelymaintainthedesiredoutputvoltageandcurrentofthePWMrectifierunderdistortedpowergridconditions.ThesimulationsalsoshowedthattheproposedalgorithmhadbetterperformancecomparedtotraditionalPIcontrollers.

Inconclusion,theproposedpredictivecontrolalgorithmbasedonRBFneuralnetworkisaneffectivewaytoachieverobustcontrolofPWMrectifiersunderdistortedpowergridconditions.ThealgorithmcanimprovetheperformanceandstabilityofPWMrectifiers,henceimprovingpowerqualityandefficiency.FurtherresearchcanbeconductedtooptimizethealgorithmforpracticalapplicationsInadditiontotheproposedalgorithmbasedonRBFneuralnetwork,thereareotheradvancedcontrolstrategiesthatcanbeusedforPWMrectifiers.Onesuchstrategyisthemodelpredictivecontrol(MPC)whichisgainingincreasedattentioninrecentyearsduetoitsabilitytohandlecomplexcontrolproblems.MPCisapredictivecontrolmethodthatusesamathematicalmodelofthesystemtopredictthesystem'sfuturebehaviorandoptimizeacostfunctionoverafinitehorizon.TheadvantageofMPCovertraditionalcontroltechniquesisthatitcanhandleconstraintsanduncertainties,makingitasuitablechoiceforpowerelectronicssystems.

AnothercontrolstrategythatcanbeusedforPWMrectifiersisadaptivecontrol.Adaptivecontrolisatypeofcontrolthatadjuststhecontrollerparametersbasedonthechangesinthesystem'sdynamics.Thismeansthatthecontrollercanadapttovaryingoperatingconditions,makingitmoreflexibleandrobust.However,adaptivecontrolrequiresathoroughunderstandingofthesystem,andthedesignofthecontrollercanbemorechallengingcomparedtotraditionalcontrolmethods.

Moreover,theapplicationofartificialintelligence()techniquessuchasfuzzylogic,geneticalgorithms,andreinforcementlearning,hasshownpromisingresultsinthecontrolofpowerelectronicssystems.Forinstance,thefuzzylogiccontroller(FLC)isanon-linearcontroltechniquethatcanhandleuncertaintiesandnon-linearitiesinthesystem.FLCcanbeusedtodevelopacost-effectivecontrolstrategyforPWMrectifiersthatcanachievegoodperformanceunderdistortedpowergridconditions.

Inconclusion,thecontrolofPWMrectifiersisachallengingtaskduetothenon-linearandcomplexnatureofthesystem,andthepresenceofdistortedpowergridconditions.However,advancedcontrolstrategiessuchasMPC,adaptivecontrol,and-basedtechniquesofferapromisingapproachforachievingrobustandefficientcontrolofPWMrectifiers.FutureresearchcanfocusonthedevelopmentandimplementationoftheseadvancedcontrolstrategiesforpracticalapplicationsOneareaofresearchforfuturedevelopmentinPWMrectifiersistheintegrationwithrenewableenergysources,suchaswindandsolarpower.Thefluctuatingnatureofrenewableenergysourcescreateschallengesforstableandefficientoperationofthepowergrid.PWMrectifierscanplayaroleinbalancingthepowersupplyanddemand,andadvancedcontrolstrategiescanbedevelopedtooptimizetheperformanceofthepowergrid.

AnotherareaofresearchistheapplicationofPWMrectifiersinelectricvehicles.Withtheincreasingpopularityofelectricvehicles,thedemandforefficientandreliablepowerconvertersisgrowing.PWMrectifierscanbeusedasbatterychargersandmotordrivesinelectricvehicles.Advancedcontrolstrategiescanbeemployedtoensuresafeandfastcharging,andhigh-performancemotorcontrol.

Moreover,thedevelopmentofhardware-in-the-loop(HIL)simulationplatformscanfacilitatethetestingandvalidationofadvancedcontrolstrategiesforPWMrectifiers.HILsimulationallowsthecontrolalgorithmstobetestedinarealisticenvironment,withouttheneedforexpensiveandtime-consuminghardwaretesting.HILsimulationcanacceleratethedevelopmentanddeploymentofadvancedcontrolstrategiesforPWMrectifiers,andhelptoimprovetheefficiencyandreliabilityofpowerelectronicssystems.

Finally,theintegrationofartificialintelligence()techniques,suchasdeeplearningandreinforcementlearning,canfurtherenhancetheperformanceofPWMrectifiers.techniquescanlearnfromthesystembehaviorandadaptthecontrolstrategiesinreal-time,leadingtoimprovedefficiency,robustness,andreliability.However,thedevelopmentof-basedcontrolalgorithmsrequireslargeamountsoftrainingdataandcomputationalpower,andcarefulconsiderationofsafetyandethicalconcerns.

Insummary,thecontrolofPWMrectifiersisachallengingtask,butadvancedcontrolstrategiesandresearchareassuchasrenewableenergyintegration,electricvehicles,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论