版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
畸变电网下PWM整流器鲁棒预测控制研究摘要:畸变电网在现代工业生产中广泛存在,其复杂性和不稳定性对电力系统的稳定运行产生了深远影响。针对畸变电网下PWM整流器的鲁棒控制问题,本文提出了一种基于预测控制的解决方案。首先,通过建立畸变电网下PWM整流器的动态数学模型,利用基于神经网络的系统辨识技术进行参数辨识,建立了一个能够准确反映畸变电网特性的系统模型。然后,采用基于RBF神经网络的预测控制算法进行预测和控制,利用控制器对PWM整流器进行鲁棒性调节,实现了对畸变电网下PWM整流器的鲁棒控制。最后,通过仿真实验验证了该预测控制算法的可行性和有效性。
关键词:畸变电网;PWM整流器;鲁棒控制;预测控制;RBF神经网络
Abstract:Distortedpowergridhasbeenwidelyexistinmodernindustrialproduction,anditscomplexityandinstabilityhaveprofoundimpactonthestableoperationofpowersystem.InordertosolvetherobustcontrolproblemofPWMrectifierunderdistortedpowergrid,thispaperproposesasolutionbasedonpredictivecontrol.Firstly,byestablishingthedynamicmathematicalmodelofPWMrectifierunderdistortedpowergrid,usingthesystemidentificationtechnologybasedonneuralnetworkforparameteridentification,weestablishedasystemmodelthatcanaccuratelyreflectthecharacteristicsofdistortedpowergrid.Then,thepredictivecontrolalgorithmbasedonRBFneuralnetworkisusedforpredictionandcontrol,andthecontrollerisusedtoadjusttherobustnessofPWMrectifier,realizingtherobustcontrolofPWMrectifierunderdistortedpowergrid.Finally,thefeasibilityandeffectivenessofthepredictivecontrolalgorithmareverifiedbysimulationexperiments.
Keywords:Distortedpowergrid;PWMrectifier;Robustcontrol;Predictivecontrol;RBFneuralnetworInrecentyears,theuseofpowerelectronics-basedsystemssuchasPWMrectifiershasincreasedrapidlyduetotheirhighefficiencyandexcellentperformance.However,theoperationofsuchsystemsinadistortedpowergridcancausesignificantchallenges.Thedistortioninthepowergridcanresultinseveralissuessuchasreducedpowerquality,decreasedsystemefficiency,andeveninstability.Therefore,therobustcontrolofPWMrectifiersunderdistortedpowergridconditionshasbecomeanimportantresearchtopic.
Toaddressthischallenge,apredictivecontrolalgorithmbasedonRBFneuralnetworkisproposedinthisstudy.ThealgorithmutilizestheRBFneuralnetworktopredicttheoutputvoltageandcurrentofthePWMrectifierunderdifferentoperatingconditions.ThepredictedvaluesarethenusedbythecontrollertoadjusttherobustnessofthePWMrectifier.ThecontrolobjectiveistomaintainthedesiredoutputvoltageandcurrentofthePWMrectifierunderdistortedpowergridconditions.
Theproposedalgorithmwastestedthroughsimulationexperiments.TheresultsshowedthatthealgorithmwasabletoeffectivelymaintainthedesiredoutputvoltageandcurrentofthePWMrectifierunderdistortedpowergridconditions.ThesimulationsalsoshowedthattheproposedalgorithmhadbetterperformancecomparedtotraditionalPIcontrollers.
Inconclusion,theproposedpredictivecontrolalgorithmbasedonRBFneuralnetworkisaneffectivewaytoachieverobustcontrolofPWMrectifiersunderdistortedpowergridconditions.ThealgorithmcanimprovetheperformanceandstabilityofPWMrectifiers,henceimprovingpowerqualityandefficiency.FurtherresearchcanbeconductedtooptimizethealgorithmforpracticalapplicationsInadditiontotheproposedalgorithmbasedonRBFneuralnetwork,thereareotheradvancedcontrolstrategiesthatcanbeusedforPWMrectifiers.Onesuchstrategyisthemodelpredictivecontrol(MPC)whichisgainingincreasedattentioninrecentyearsduetoitsabilitytohandlecomplexcontrolproblems.MPCisapredictivecontrolmethodthatusesamathematicalmodelofthesystemtopredictthesystem'sfuturebehaviorandoptimizeacostfunctionoverafinitehorizon.TheadvantageofMPCovertraditionalcontroltechniquesisthatitcanhandleconstraintsanduncertainties,makingitasuitablechoiceforpowerelectronicssystems.
AnothercontrolstrategythatcanbeusedforPWMrectifiersisadaptivecontrol.Adaptivecontrolisatypeofcontrolthatadjuststhecontrollerparametersbasedonthechangesinthesystem'sdynamics.Thismeansthatthecontrollercanadapttovaryingoperatingconditions,makingitmoreflexibleandrobust.However,adaptivecontrolrequiresathoroughunderstandingofthesystem,andthedesignofthecontrollercanbemorechallengingcomparedtotraditionalcontrolmethods.
Moreover,theapplicationofartificialintelligence()techniquessuchasfuzzylogic,geneticalgorithms,andreinforcementlearning,hasshownpromisingresultsinthecontrolofpowerelectronicssystems.Forinstance,thefuzzylogiccontroller(FLC)isanon-linearcontroltechniquethatcanhandleuncertaintiesandnon-linearitiesinthesystem.FLCcanbeusedtodevelopacost-effectivecontrolstrategyforPWMrectifiersthatcanachievegoodperformanceunderdistortedpowergridconditions.
Inconclusion,thecontrolofPWMrectifiersisachallengingtaskduetothenon-linearandcomplexnatureofthesystem,andthepresenceofdistortedpowergridconditions.However,advancedcontrolstrategiessuchasMPC,adaptivecontrol,and-basedtechniquesofferapromisingapproachforachievingrobustandefficientcontrolofPWMrectifiers.FutureresearchcanfocusonthedevelopmentandimplementationoftheseadvancedcontrolstrategiesforpracticalapplicationsOneareaofresearchforfuturedevelopmentinPWMrectifiersistheintegrationwithrenewableenergysources,suchaswindandsolarpower.Thefluctuatingnatureofrenewableenergysourcescreateschallengesforstableandefficientoperationofthepowergrid.PWMrectifierscanplayaroleinbalancingthepowersupplyanddemand,andadvancedcontrolstrategiescanbedevelopedtooptimizetheperformanceofthepowergrid.
AnotherareaofresearchistheapplicationofPWMrectifiersinelectricvehicles.Withtheincreasingpopularityofelectricvehicles,thedemandforefficientandreliablepowerconvertersisgrowing.PWMrectifierscanbeusedasbatterychargersandmotordrivesinelectricvehicles.Advancedcontrolstrategiescanbeemployedtoensuresafeandfastcharging,andhigh-performancemotorcontrol.
Moreover,thedevelopmentofhardware-in-the-loop(HIL)simulationplatformscanfacilitatethetestingandvalidationofadvancedcontrolstrategiesforPWMrectifiers.HILsimulationallowsthecontrolalgorithmstobetestedinarealisticenvironment,withouttheneedforexpensiveandtime-consuminghardwaretesting.HILsimulationcanacceleratethedevelopmentanddeploymentofadvancedcontrolstrategiesforPWMrectifiers,andhelptoimprovetheefficiencyandreliabilityofpowerelectronicssystems.
Finally,theintegrationofartificialintelligence()techniques,suchasdeeplearningandreinforcementlearning,canfurtherenhancetheperformanceofPWMrectifiers.techniquescanlearnfromthesystembehaviorandadaptthecontrolstrategiesinreal-time,leadingtoimprovedefficiency,robustness,andreliability.However,thedevelopmentof-basedcontrolalgorithmsrequireslargeamountsoftrainingdataandcomputationalpower,andcarefulconsiderationofsafetyandethicalconcerns.
Insummary,thecontrolofPWMrectifiersisachallengingtask,butadvancedcontrolstrategiesandresearchareassuchasrenewableenergyintegration,electricvehicles,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 14048.16-2025低压开关设备和控制设备第8部分:旋转电机用装入式热保护(PTC)控制单元
- 2026年创意黑金风的崛起财务报告分析
- 2025年中职野生动物保护(保护基础认知)试题及答案
- 2025年大学特殊教育(特殊儿童康复)试题及答案
- 2025年高职(旅行社业务)线路设计实操试题及答案
- 2025年高职(仓储管理)仓储管理综合测试试题及答案
- 2025年高职空中乘务(乘务服务规范)试题及答案
- 2025年高职风电系统运行与维护(风机调试)期末试题
- 2026年建筑施工(脚手架搭设技术)试题及答案
- 2025年中职(客户关系管理)客户关系综合测试试题及答案
- 不良资产合作战略框架协议文本
- 2025年盐城中考历史试卷及答案
- 2026年孝昌县供水有限公司公开招聘正式员工备考题库完整参考答案详解
- 2025年郑州工业应用技术学院马克思主义基本原理概论期末考试模拟试卷
- 测绘资料档案汇交制度
- 2026年孝昌县供水有限公司公开招聘正式员工备考题库及完整答案详解
- 2025年六年级上册道德与法治期末测试卷附答案(完整版)
- 附件二;吊斗安全计算书2.16
- 学校食堂改造工程施工组织设计方案
- 2025年浙江省辅警考试真题及答案
- 2025中国热带农业科学院科技信息研究所第一批招聘4人备考题库(第1号)附答案
评论
0/150
提交评论