云南省永仁县一中2023年数学高一下期末统考模拟试题含解析_第1页
云南省永仁县一中2023年数学高一下期末统考模拟试题含解析_第2页
云南省永仁县一中2023年数学高一下期末统考模拟试题含解析_第3页
云南省永仁县一中2023年数学高一下期末统考模拟试题含解析_第4页
云南省永仁县一中2023年数学高一下期末统考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线,,的斜率分别为,,,如图所示,则()A. B.C. D.2.设向量,且,则实数的值为()A. B. C. D.3.已知扇形的圆心角为120°,半径为6,则扇形的面积为()A. B. C. D.4.已知是平面内两个互相垂直的向量,且,若向量满足,则的最大值是()A.1 B. C.3 D.5.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30 B.25 C.20 D.156.将函数的图象向左平移个长度单位后,所得到的图象关于轴对称,则的最小值是()A. B. C. D.7.在北京召开的国际数学家大会的会标如图所示,它是由个相同的直角三角形与中间的小正方形拼成的一个大正方形,若直角三角形中较小的锐角为,大正方形的面积是,小正方形的面积是,则()A. B. C. D.8.执行如图所示的程序框图,则输出的s的值为()A. B. C. D.9.在正方体中,与所成的角为()A.30° B.90° C.60° D.120°10.某几何体三视图如图所示,则该几何体中的棱与面相互平行的有()A.2对 B.3对 C.4对 D.5对二、填空题:本大题共6小题,每小题5分,共30分。11.某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是______12.已知数列的前n项和,则___________.13.函数的单调增区间为_________.14.若正实数满足,则的最大值为__________.15.水平放置的的斜二测直观图如图所示,已知,,则边上的中线的实际长度为______.16.已知常数θ∈(0,π2),若函数f(x)在Rf(x)=2sinπx-1≤x≤1log是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)求的最小正周期;(2)求在闭区间上的最大值和最小值.18.已知数列的前项和为,且,.(1)求数列的通项公式;(2)已知,记(且),是否存在这样的常数,使得数列是常数列,若存在,求出的值;若不存在,请说明理由;(3)若数列,对于任意的正整数,均有成立,求证:数列是等差数列.19.已知函数在一个周期内的图像经过点和点,且的图像有一条对称轴为.(1)求的解析式及最小正周期;(2)求的单调递增区间.20.在中,角A,B,C所对的边分别为a,b,c,.(1)求角B;(2)若,求周长的取值范围.21.若数列中存在三项,按一定次序排列构成等比数列,则称为“等比源数列”。(1)在无穷数列中,,,求数列的通项公式;(2)在(1)的结论下,试判断数列是否为“等比源数列”,并证明你的结论;(3)已知无穷数列为等差数列,且,(),求证:数列为“等比源数列”.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据题意可得出直线,,的倾斜角满足,由倾斜角与斜率的关系得出结果.【详解】解:设三条直线的倾斜角为,根据三条直线的图形可得,因为,当时,,当时,单调递增,且,故,即故选A.【点睛】本题考查了直线的倾斜角与斜率的关系,解题的关键是熟悉正切函数的单调性.2、D【解析】

根据向量垂直时数量积为0,列方程求出m的值.【详解】向量,(m+1,﹣m),当⊥时,•0,即﹣(m+1)﹣2m=0,解得m.故选D.【点睛】本题考查了平面向量的数量积的坐标运算,考查了向量垂直的条件转化,是基础题.3、C【解析】

根据扇形的面积公式即可求得.【详解】解:由题意:,所以扇形的面积为:故选:C【点睛】本题考查扇形的面积公式,考查运算求解能力,核心是记住公式.4、D【解析】

设出平面向量的夹角,求出的夹角,最后利用平面向量数量积的运算公式进行化简等式,最后利用辅助角公式求出的最大值.【详解】设平面向量的夹角为,因为是平面内两个互相垂直的向量,所以平面向量的夹角为,因为是平面内两个互相垂直的向量,所以.,,,其中,显然当时,有最大值,即.故选:D【点睛】本题考查平面向量数量积的性质及运算,属于中档题.5、C【解析】

抽取比例为,,抽取数量为20,故选C.6、B【解析】

试题分析:由题意得,,令,可得函数的图象对称轴方程为,取是轴右侧且距离轴最近的对称轴,因为将函数的图象向左平移个长度单位后得到的图象关于轴对称,的最小值为,故选B.考点:两角和与差的正弦函数及三角函数的图象与性质.【方法点晴】本题主要考查了两角和与差的正弦函数及三角函数的图象与性质,将三角函数图象向左平移个单位,所得图象关于轴对称,求的最小值,着重考查了三角函数的化简、三角函数图象的对称性等知识的灵活应用,本题的解答中利用辅助角公式,化简得到函数,可取出函数的对称轴,确定距离最近的点,即可得到结论.7、C【解析】

根据题意即可算出每个直角三角形的面积,再根据勾股定理和面积关系即可算出三角形的两条直角边.从而算出【详解】由题意得直角三角形的面积,设三角形的边长分别为,则有,所以,所以,选C.【点睛】本题主要考查了三角形的面积公式以及直角三角形中,正弦、余弦的计算,属于基础题.8、A【解析】

模拟程序运行,观察变量值,判断循环条件可得结论.【详解】运行程序框图,,;,;,,此时满足条件,跳出循环,输出的.故选:A.【点睛】本题考查程序框图,考查循环结构,解题时只要模拟程序运行即可得结论.9、C【解析】

把异面直线与所成的角,转化为相交直线与所成的角,利用为正三角形,即可求解.【详解】连结,则,所以相交直线与所成的角,即为异面直线与所成的角,连结,则是正三角形,所以,即异面直线与所成的角,故选C.【点睛】本题主要考查了空间中异面直线及其所成角的求法,其中根据异面直线的定义,把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.10、C【解析】

本道题结合三视图,还原直观图,结合直线与平面判定,即可。【详解】结合三视图,还原直观图,得到AB平行平面OCD,DC平行平面OBA,BC平行平面ODA,DA平行平面OBC,故有4对。故选C。【点睛】本道题考查了三视图还原直观图,难度中等。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:∵从7人中选2人共有C72=21种选法,从4个男生中选2人共有C42=6种选法∴没有女生的概率是=,∴至少有1名女生当选的概率1-=.考点:本题主要考查古典概型及其概率计算公式.点评:在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.12、17【解析】

根据所给的通项公式,代入求得,并由代入求得.即可求得的值.【详解】数列的前n项和,则,而,,所以,则,故答案为:.【点睛】本题考查了数列前n项和通项公式的应用,递推法求数列的项,属于基础题.13、【解析】

先求出函数的定义域,再根据二次函数的单调性和的单调性,结合复合函数的单调性的判断可得出选项.【详解】因为,所以或,即函数定义域为,设,所以在上单调递减,在上单调递增,而在单调递增,由复合函数的单调性可知,函数的单调增区间为.故填:.【点睛】本题考查复合函数的单调性,注意在考虑函数的单调性的同时需考虑函数的定义域,属于基础题.14、【解析】

可利用基本不等式求的最大值.【详解】因为都是正数,由基本不等式有,所以即,当且仅当时等号成立,故的最大值为.【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.15、【解析】

利用斜二测直观图的画图规则,可得为一个直角三角形,且,得,从而得到边上的中线的实际长度为.【详解】利用斜二测直观图的画图规则,平行于轴或在轴上的线段,长度保持不变;平行于轴或在轴上的线段,长度减半,利用逆向原则,所以为一个直角三角形,且,所以,所以边上的中线的实际长度为.【点睛】本题考查斜二测画法的规则,考查基本识图、作图能力.16、15【解析】

根据f(-1【详解】∵函数f(x)在R上恒有f(-1∴f-∴函数周期为4.∵常数θ∈(0,π∴cos∴函数y=f(x)-cosθ-1在区间[-5,14]上零点,即函数y=f(x) (x∈[-5,14])与直线由f(x)=2sinπx由图可知,在一个周期内,函数y=f(x)-cos故函数y=f(x)-cosθ-1在区间故填15.【点睛】本题主要考查了函数零点的个数判断,涉及数形结合思想在解题中的运用,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)最大值为,最小值为【解析】

(1)由三角函数恒等变换的应用可得,利用正弦函数的周期性可求最小正周期.

(2)通过,求得,再利用正弦函数的性质可求最值.【详解】解答:解:(1)由已知,有

所以的最小正周期;

(2),当,即时,取最大值,且最大值为;当,即时,取最小值,且最小值为.【点睛】本题主要考查了三角函数恒等变换的应用,正弦函数性质的应用,考查了转化思想,属于基础题.18、(1)(2)(3)见解析【解析】

(1)根据和项与通项关系得,再根据等比数列定义与通项公式求解(2)先化简,再根据恒成立思想求的值(3)根据和项得,再作差得,最后根据等差数列定义证明.【详解】(1),所以,由得时,,两式相减得,,,数列是以2为首项,公比为的等比数列,所以.(2)若数列是常数列,为常数.只有,解得,此时.(3)①,,其中,所以,当时,②②式两边同时乘以得,③①式减去③得,,所以,因为,所以数列是以为首项,公差为的等差数列.【点睛】本题考查利用和项求通项、等差数列定义以及利用恒成立思想求参数,考查基本分析论证与求解能力,属中档题19、(1),;(2).【解析】

(1)由函数的图象经过点且f(x)的图象有一条对称轴为直线,可得最大值A,且能得周期并求得ω,由五点法作图求出的值,可得函数的解析式.(2)利用正弦函数的单调性求得f(x)的单调递增区间.【详解】(1)函数f(x)=Asin(ωx+)(A>0,ω>0,)在一个周期内的图象经过点,,且f(x)的图象有一条对称轴为直线,故最大值A=4,且,∴,∴ω=1.所以.因为的图象经过点,所以,所以,.因为,所以,所以.(2)因为,所以,,所以,,即的单调递增区间为.【点睛】本题主要考查由函数y=Asin(ωx+)的性质求解析式,通常由函数的最大值求出A,由周期求出ω,由五点法作图求出的值,考查了正弦型函数的单调性问题,属于基础题.20、(1);(2)【解析】

(1)根据辅助角公式和的范围,得到的值;(2)利用余弦定理和基本不等式,得到的范围,结合三角形三边关系,从而得到周长的取值范围.【详解】(1)因为,所以,即,因为,所以,所以,所以;(2)在中,由余弦定理得由基本不等式可知,又,所以解得,根据三角形三边关系得,即,故所以周长的范围为.【点睛】本题考查辅助角公式,余弦定理解三角形,基本不等式求最值,三角形三边关系,属于中档题.21、(1);(2)不是,证明见解析;(3)证明见解析.【解析】

(1)由,可得出,则数列为等比数列,然后利用等比数列的通项公式可间接求出;(2)假设数列为“等比源数列”,则此数列中存在三项成等比数列,可得出,展开后得出,然后利用数的奇偶性即可得出结论;(3)设等差数列的公差为,假设存在三项使得,展开得出,从而可得知,当,时,原命题成立.【详解】(1),得,即,且.所以,数列是以为首项,以为公比的等比数列,则,因此,;(2)数列不是“等比源数列”,下面用反证法来证明.假设数列是“等比源数列”,则存在三项、、,设.由于数列为单调递增的正项数列,则,所以.得,化简得,等式两边同时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论