




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图象向左平移个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,若对任意的均有成立,则的最小值为()A. B. C. D.2.已知函数是连续的偶函数,且时,是单调函数,则满足的所有之积为()A. B. C. D.3.设m,n是两条不同的直线,α A.若m⊥β,n⊥β , n⊥α,则m⊥αC.若m⊥n, n∥α,则m⊥α D.若m⊥n4.在,内角所对的边分别为,且,则()A. B. C. D.15.阅读如图所示的算法框图,输出的结果S的值为A.8 B.6 C.5 D.46.将函数的图象向右平移个单位长度,所得图象对应的函数解析式是A. B. C. D.7.二进制是计算机技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则“借一当二”。当前的计算机系统使用的基本上是二进制系统,计算机中的二进制则是一个非常微小的开关,用1来表示“开”,用0来表示“关”。如图所示,把十进制数1010化为二进制数(1010)2,十进制数9910化为二进制数11000112,把二进制数(10110A.932 B.931 C.108.设函数,则是()A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数9.无穷数列1,3,6,10,…的通项公式为()A. B.C. D.10.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A.1盏 B.3盏C.5盏 D.9盏二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列满足,,,记数列的前项和为,则________.12.若直线上存在点可作圆的两条切线,切点为,且,则实数的取值范围为.13.已知等比数列、、、满足,,,则的取值范围为__________.14.等差数列的前项和为,,,等比数列满足,.(1)求数列,的通项公式;(2)求数列的前15项和.15.对于0≤m≤4的任意m,不等式x2+mx>4x+m-3恒成立,则x的取值范围是________________.16.某工厂生产三种不同型号的产品,产品数量之比依次为,现用分层抽样方法抽出一个容量为的样本,样本中种型号产品有16件,那么此样本的容量=三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知公差不为0的等差数列{an}满足a3=9,a(1)求{a(2)设数列{bn}满足bn=1n(18.已知向量,,且.(1)求向量在上的投影;(2)求.19.在中,角所对的边分别为,满足(1)求的值;(2)若,求b的取值范围.20.已知等比数列是递增数列,且满足:,.(1)求数列的通项公式:(2)设,求数列的前项和.21.已知是等差数列,为其前项和,且,.(1)求数列的通项公式;(2)若数列满足,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
直接应用正弦函数的平移变换和伸缩变换的规律性质,求出函数的解析式,对任意的均有,说明函数在时,取得最大值,得出的表达式,结合已知选出正确答案.【详解】因为函数的图象向左平移个单位长度,所以得到函数,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,所以,对任意的均有成立,所以在时,取得最大值,所以有而,所以的最小值为.【点睛】本题考查了正弦型函数的图象变换规律、函数图象的性质,考查了函数最大值的概念,正确求出变换后的函数解析式是解题的关键.2、D【解析】
由y=f(x+2)为偶函数分析可得f(x)关于直线x=2对称,进而分析可得函数f(x)在(2,+∞)和(﹣∞,2)上都是单调函数,据此可得若f(x)=f(1),则有x=1或4﹣x=1,变形为二次方程,结合根与系数的关系分析可得满足f(x)=f(1)的所有x之积,即可得答案.【详解】根据题意,函数y=f(x+2)为偶函数,则函数f(x)关于直线x=2对称,又由当x>2时,函数y=f(x)是单调函数,则其在(﹣∞,2)上也是单调函数,若f(x)=f(1),则有x=1或4﹣x=1,当x=1时,变形可得x2+3x﹣3=0,有2个根,且两根之积为﹣3,当4﹣x=1时,变形可得x2+x﹣13=0,有2个根,且两根之积为﹣13,则满足f(x)=f(1)的所有x之积为(﹣3)×(﹣13)=39;故选:D.【点睛】本题考查抽象函数的应用,涉及函数的对称性与单调性的综合应用,属于综合题.3、A【解析】
依据立体几何有关定理及结论,逐个判断即可。【详解】A正确:利用“垂直于同一个平面的两条直线平行”及“两条直线有一条垂直于一个平面,则另一条也垂直于该平面”,若m⊥β且n⊥β ,则m//n,又n⊥α,所以m⊥αB错误:若m∥β, , β⊥α,则C错误:若m⊥n, n∥α,则m可能垂直于平面α,也可能平行于平面α,还可能在平面D错误:若m⊥n , n⊥β , β⊥α,则【点睛】本题主要考查立体几何中的定理和结论,意在考查学生几何定理掌握熟练程度。4、C【解析】
直接利用余弦定理求解.【详解】由余弦定理得.故选C【点睛】本题主要考查余弦定理解三角形,意在考查学生对该知识的理解掌握水平,属于基础题.5、B【解析】
判断框,即当执行到时终止循环,输出.【详解】初始值,代入循环体得:,,,输出,故选A.【点睛】本题由于循环体执行的次数较少,所以可以通过列举每次执行后的值,直到循环终止,从而得到的输出值.6、B【解析】
利用三角函数图像平移原则,结合诱导公式,即可求解.【详解】函数的图象向右平移个单位长度得到.故选B.【点睛】本题考查三角图像变换,诱导公式,熟记变换原则,准确计算是关键,是基础题.7、D【解析】
利用古典概型的概率公式求解.【详解】二进制的后五位的排列总数为25二进制的后五位恰好有三个“1”的个数为C5由古典概型的概率公式得P=10故选:D【点睛】本题主要考查排列组合的应用,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.8、D【解析】函数,化简可得f(x)=–cos2x,∴f(x)是偶函数.最小正周期T==π,∴f(x)最小正周期为π的偶函数.故选D.9、C【解析】试题分析:由累加法得:,分别相加得,,故选C.考点:数列的通项公式.10、B【解析】
设塔顶的a1盏灯,由题意{an}是公比为2的等比数列,∴S7==181,解得a1=1.故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、7500【解析】
讨论的奇偶性,分别化简递推公式,根据等差数列的定义得的通项公式,进而可求.【详解】当是奇数时,=﹣1,由,得,所以,,,…,…是以为首项,以2为公差的等差数列,当为偶数时,=1,由,得,所以,,,…,…是首项为,以4为公差的等差数列,则,所以.故答案为:7500【点睛】本题考查数列递推公式的化简,等差数列的通项公式,以及等差数列前n项和公式的应用,也考查了分类讨论思想,属于中档题.12、【解析】试题分析:若,则,直线上存在点可作和的两条切线等价于直线与圆有公共点,由圆心到直线的距离公式可得,解之可得.考点:点到直线的距离公式及直线与圆的位置关系的运用.【方法点晴】本题主要考查了点到直线的距离公式及直线与圆的位置关系的运用,涉及到圆心到直线的距离公式和不等式的求解,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及学生的推理与运算能力,本题的解答中直线上存在点可作和的两条切线等价于直线与圆有公共点是解答的关键.13、【解析】
设等比数列、、、的公比为,由和计算出的取值范围,再由可得出的取值范围.【详解】设等比数列、、、的公比为,,,,所以,,,.所以,,故答案为:.【点睛】本题考查等比数列通项公式及其性质,解题的关键就是利用已知条件求出公比的取值范围,考查运算求解能力,属于中等题.14、(1),;(2)125.【解析】
(1)直接利用等差数列,等比数列的公式得到答案.(2),前5项为正,后面为负,再计算数列的前15项和.【详解】解:(1)联立,解得,,故,,联立,解得,故.(2).【点睛】本题考查了等差数列,等比数列,绝对值和,判断数列的正负分界处是解题的关键.15、(-∞,-1)∪(3,+∞)【解析】不等式可化为m(x-1)+x2-4x+3>0在0≤m≤4时恒成立.令f(m)=m(x-1)+x2-4x+3.则⇒⇒即x<-1或x>3.故答案为(-∞,-1)∪(3,+∞)16、1.【解析】
解:A种型号产品所占的比例为2/(2+3+5)=2/10,16÷2/10=1,故样本容量n=1,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)an=4n-3【解析】
(1)根据条件列方程组,求出首项和公差即可得出通项公式;(2)利用裂项相消法求和.【详解】(1)设等差数列an的公差为d(d≠0)a1解得d=4或d=0(舍去),a1∴a(2)∵b∴S=1【点睛】本题考查了等差数列的通项公式,考查了利用裂项相消进行数列求和的方法,属于基础题.18、(1)(2)40【解析】
(1)根据垂直得到,再计算投影得到答案.(2)展开直接计算得到答案.【详解】(1)因为,由得.,.在上的投影为.(2).【点睛】本题考查了向量的投影和数量积,意在考查学生的计算能力.19、(1)(2)【解析】
(1)代入条件化简得,再由同角三角函数基本关系求出;(2)利用余弦定理、,把表示成关于的二次函数.【详解】(1),,即,,,又,解得:.(2),可得,由余弦定理可得:,,所以b的取值范围为.【点睛】对于运动变化问题,常用函数与方程的思想进行研究,所以自然而然想到构造以是关于或的函数.20、(1);(2)【解析】
(1)利用等比数列的性质结合已知条件解得首项和公比,由此得通项公式;(2)由(1)得,再利用等差数列的求和公式进行解答即可.【详解】(1)由题意,得,又,所以,,或,,由是递增的等比数列,得,所以,,且,∴,即;(2)由(1)得,得,所以数列是以1为首项,以2为公差的等差数列,所以.【点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论