广东省廉江市实验学校2022-2023学年数学高一下期末学业水平测试模拟试题含解析_第1页
广东省廉江市实验学校2022-2023学年数学高一下期末学业水平测试模拟试题含解析_第2页
广东省廉江市实验学校2022-2023学年数学高一下期末学业水平测试模拟试题含解析_第3页
广东省廉江市实验学校2022-2023学年数学高一下期末学业水平测试模拟试题含解析_第4页
广东省廉江市实验学校2022-2023学年数学高一下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对某班学生一次英语测试的成绩分析,各分数段的分布如下图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为()A.92% B.24% C.56% D.76%2.设函数,其中均为非零常数,若,则的值是()A.2 B.4 C.6 D.不确定3.如图,已知正三棱柱的底面边长为2cm,高为5cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点的最短路线的长为()cm.A.12 B.13 C.14 D.154.若实数满足约束条件,则的最大值为()A.9 B.7 C.6 D.35.设有直线m、n和平面、.下列四个命题中,正确的是()A.若m∥,n∥,则m∥nB.若m,n,m∥,n∥,则∥C.若,m,则mD.若,m,m,则m∥6.已知向量,则()A.12 B. C. D.87.已知函数,,若成立,则的最小值为()A. B. C. D.8.若关于的不等式在区间上有解,则的取值范围是()A. B. C. D.9.如图,在中,,是边上的高,平面,则图中直角三角形的个数是()A. B. C. D.10.某产品的广告费用x与销售额y的统计数据如下表:广告费用(万元)

4

2

3

5

销售额(万元)

49

26

39

54

根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系中,点到直线的距离为______.12.已知数列的前项和为,,,则__________.13.一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为.14.在数列an中,a1=2,a15.在中,为上的一点,且,是的中点,过点的直线,是直线上的动点,,则_________.16.若在等比数列中,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在如图所示的直角梯形中,,求该梯形绕上底边所在直线旋转一周所形成几何体的表面积和体积.18.已知数列满足:,,数列满足.(1)若数列的前项和为,求的值;(2)求的值.19.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,(Ⅰ)求B的大小;(Ⅱ)若,求的取值范围.20.已知圆,直线(1)求证:直线过定点;(2)求直线被圆所截得的弦长最短时的值;(3)已知点,在直线MC上(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数.21.某专卖店为了对新产品进行合理定价,将该产品按不同的单价试销,调查统计如下表:售价(元)45678周销量(件)9085837973(1)求周销量y(件)关于售价x(元)的线性回归方程;(2)按(1)中的线性关系,已知该产品的成本为2元/件,为了确保周利润大于598元,则该店应该将产品的售价定为多少?参考公式:,.参考数据:,

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:.故C正确.考点:频率分布直方图.2、C【解析】

根据正弦、余弦的诱导公式,由,可以得到等式,求出的表达式,结合刚得到的等式求值即可.【详解】因为,所以.故选:C【点睛】本题考查三角函数的化简求值,考查诱导公式的应用,属于基础题.3、B【解析】

将三棱柱的侧面展开,得到棱柱的侧面展开图,利用矩形的对角线长,即可求解.【详解】将正三棱柱沿侧棱展开两次,得到棱柱的侧面展开图,如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,即为三棱柱的侧面上所求距离的最小值,由已知求得的长等于,宽等于,由勾股定理得,故选B.【点睛】本题主要考查了棱柱的结构特征,以及棱柱的侧面展开图的应用,着重考查了空间想象能力,以及转化思想的应用,属于基础题.4、A【解析】由约束条件作出可行域如图,联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最大,有最大值为,故选A.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5、D【解析】

当两条直线同时与一个平面平行时,两条直线之间的关系不能确定,故A不正确,B选项再加上两条直线相交的条件,可以判断面与面平行,故B不正确,C选项再加上m垂直于两个平面的交线,得到线面垂直,故C不正确,D选项中由α⊥β,m⊥β,m,可得m∥α,故是正确命题,故选D6、C【解析】

根据向量的坐标表示求出,即可得到模长.【详解】由题,,所以.故选:C【点睛】此题考查向量的数乘运算和减法运算的坐标表示,并求向量的模长,关键在于熟记公式,准确求解.7、B【解析】,则,所以,则,易知,,则在单调递减,单调递增,所以,故选B。点睛:本题考查导数的综合应用。利用导数求函数的极值和最值是导数综合应用题型中的常见考法。通过求导,首先观察得到导函数的极值点,利用图象判断出单调增减区间,得到最值。8、A【解析】

利用分离常数法得出不等式在上成立,根据函数在上的单调性,求出的取值范围【详解】关于的不等式在区间上有解在上有解即在上成立,设函数数,恒成立在上是单调减函数且的值域为要在上有解,则即的取值范围是故选【点睛】本题是一道关于一元二次不等式的题目,解题的关键是掌握一元二次不等式的解法,分离含参量,然后求出结果,属于基础题.9、C【解析】

根据线面垂直得出一些相交直线垂直,以及找出题中一些已知的相交直线垂直,由这些条件找出图中的直角三角形.【详解】①平面,,都是直角三角形;②是直角三角形;③是直角三角形;④由得平面,可知:也是直角三角形.综上可知:直角三角形的个数是个,故选C.【点睛】本题考查直角三角形个数的确定,考查相交直线垂直,解题时可以充分利用直线与平面垂直的性质得到,考查推理能力,属于中等题.10、B【解析】

试题分析:,∵数据的样本中心点在线性回归直线上,回归方程中的为1.4,∴42=1.4×2.5+a,∴=1.1,∴线性回归方程是y=1.4x+1.1,∴广告费用为6万元时销售额为1.4×6+1.1=3.5考点:线性回归方程二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】

利用点到直线的距离公式即可得到答案。【详解】由点到直线的距离公式可知点到直线的距离故答案为2【点睛】本题主要考查点到直线的距离,熟练掌握公式是解题的关键,属于基础题。12、【解析】

先利用时,求出的值,再令,由得出,两式相减可求出数列的通项公式,再将的表达式代入,可得出.【详解】当时,则有,;当时,由得出,上述两式相减得,,得且,所以,数列是以为首项,以为公比的等比数列,则,,那么,因此,,故答案为.【点睛】本题考查等比数列前项和与通项之间的关系,同时也考查了等比数列求和,一般在涉及与的递推关系求通项时,常用作差法来求解,考查计算能力,属于中等题.13、【解析】

设球的半径为r,则,,,所以,故答案为.考点:圆柱,圆锥,球的体积公式.点评:圆柱,圆锥,球的体积公式分别为.14、2+【解析】

因为a1∴a∴=(=2+ln15、【解析】

用表示出,由对应相等即可得出.【详解】因为,所以解得得.【点睛】本题主要考查了平面向量的基本定理,以及向量的三角形法则,平面上任意不共线的一组向量可以作为一组基底.16、【解析】

根据等比中项的性质,将等式化成即可求得答案.【详解】是等比数列,若,则.因为,所以,.故答案为:1.【点睛】本题考查等比中项的性质,考查基本运算求解能力,属于容易题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、表面积为,体积为.【解析】

直角梯形绕它的上底(较短的底)所在直线旋转一周形成的几何体是圆柱里面挖去一个圆锥,由此可计算表面积和体积.【详解】如图直角梯形绕上底边所在直线旋转一周所形成几何体是以为母线的圆柱挖去以为母线的圆锥.由题意,∴,.【点睛】本题考查旋转体的表面积和体积,解题关键是确定该旋转体是由哪些基本几何体组合成的.18、(1);(2).【解析】

(1)构造数列等差数列求得的通项公式,再进行求和,再利用裂项相消求得;

(2)由题出现,故考虑用分为偶数和奇数两种情况进行计算.【详解】(1)由得,即,所以是以为首项,1为公差的等差数列,故,故.所以,故.

(2)当为偶数时,,当为奇数时,为偶数,

综上所述,当为偶数时,,当为奇数时,即.【点睛】本题主要考查了等差数列定义的应用,考查构造法求数列的通项公式与裂项求和及奇偶并项求和的方法,考查了分析问题的能力及逻辑推理能力,属于中档题.19、(1)(2)【解析】

(Ⅰ)由条件利用正弦定理求得sinB的值,可得B的值(Ⅱ)使用正弦定理用sinA,sinC表示出a,c,得出a+c关于A的三角函数,根据A的范围和正弦函数的性质得出a+c的最值.【详解】解(Ⅰ)锐角又,,由正弦定理得,∴.

∴的取值范围为【点睛】本题主要考查正弦定理,余弦定理的应用,基本不等式的应用,属于基础题.20、(1)直线过定点(2).(3)在直线上存在定点,使得为常数.【解析】分析:(Ⅰ)利用直线系方程的特征,直接求解直线l过定点A的坐标.(Ⅱ)当AC⊥l时,所截得弦长最短,由题知,r=2,求出AC的斜率,利用点到直线的距离,转化求解即可.(Ⅲ)由题知,直线MC的方程为,假设存在定点N满足题意,则设P(x,y),,得,且,求出λ,然后求解比值.详解:(Ⅰ)依题意得,令且,得直线过定点(Ⅱ)当时,所截得弦长最短,由题知,,得,由得(Ⅲ)法一:由题知,直线的方程为,假设存在定点满足题意,则设,,得,且整理得,上式对任意恒成立,且解得,说以(舍去,与重合),综上可知,在直线上存在定点,使得为常数点睛:过定点的直线系A1x+B1y+C1+λ(A2x+B2y+C2)=0表示通过两直线l1∶A1x+B1y+C1=0与l2∶A2x+B2y+C2=0交点的直线系,而这交点即为直线系所通过的定点.21、(1);(2)14元【解析】

(1)由表中数据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论