高三数学综合测试题(含答案)_第1页
高三数学综合测试题(含答案)_第2页
高三数学综合测试题(含答案)_第3页
高三数学综合测试题(含答案)_第4页
高三数学综合测试题(含答案)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高三数学试题(理科)一、选择题(本大题共12小题,每小题5.0分,共60分)1.已知复平面的平行四边形ABCD中,定点A对应的复数为i(i是虚数单位),向量QUOTEBC对应的复数为2+i,则点D对应的复数为()A.2B.2+2iC.-2D.-2-2i2.在判断两个变量y与x是否相关时,选择了4个不同的模型,它们的相关指数分别为:模型1的相关指数为0.98,模型2的相关指数为0.80,模型3的相关指数为0.50,模型4的相关指数为0.25.其中拟合效果最好的模型是().A.模型1B.模型2C.模型3D.模型43.设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()A.0.2B.0.1C.-0.2D.-0.44.若方程x3-3x+m=0在[0,2]上有解,则实数m的取值围是()A.[-2,2]B.[0,2]C.[-2,0]D.(-∞,-2)∪(2,+∞)5.已知圆上9个点,每两点连一线段,所有线段在圆的交点有()A.36个B.72个C.63个D.126个6.函数f(x)=ax3+x+1有极值的一个充分而不必要条件是()A.a<0B.a>0C.a<-1D.a<17.若(n∈N*),且,则()A.81B.16C.8D.18.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab的最大值为()A.B.C.D.9.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是()A.B.C.D.10.已知x与y之间的几组数据如表:假设根据如表数据所得线性回归直线方程为,若某同学根据表中的前两组数据(1,0)和(2,2)求得的直线方程为,则以下结论正确的是()A.,B.,C.,D.,11.某人射击一发子弹的命中率为0.8,现在他射击19发子弹,理论和实践都表明,在这19发子弹中命中目标的子弹数X的概率满足P(X=k)=(k=0,1,2,…,19),则他射完19发子弹后,击中目标的子弹最可能是()A.14发B.15发C.16发D.15发或16发12.函数f(x)=ax3+bx2+cx+d(a≠0),若a+b+c=0,导函数f′(x)满足f′(0)f′(1)>0,设f′(x)=0的两根为x1,x2,则|x1-x2|的取值围是()A.B.C.D.第II卷非选择题二、填空题(本大题共4小题,每小题5.0分,共20分)13.某人从某城市的A地乘公交车到火车站,由于交通拥挤,所需时间(单位:分钟)X~N(50,),则他在时间段(30,70]赶到火车站的概率为________.14.如图(1),在三角形ABC中,AB⊥AC,若AD⊥BC,则AB2=BD·BC;若类比该命题,如图(2),三棱锥A-BCD中,AD⊥面ABC,若A点在三角形BCD所在平面的射影为M,则有________.15.设M=,则M与1的大小关系是__________.16.若对任意的x∈A,则x∈,就称A是“具有伙伴关系”的集合.集合M={-1,0,,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为________.三、解答题(本大题共6小题,共70分)17.(本小题共12分)已知一元二次方程x2-ax+1=0(a∈R).(1)若x=是方程的根,求a的值;(2)若x1,x2是方程两个虚根,且|x1-1|>|x2|,求a的取值围.18.(本小题共12分)随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n个人,其中男性占调查人数的.已知男性中有一半的人的休闲方式是运动,而女性只有的人的休闲方式是运动.(1)完成如图2×2列联表:(2)若在犯错误的概率不超过0.05的前提下,可认为“休闲方式有关与性别”,那么本次被调查的人数至少有多少?(3)根据(2)的结论,本次被调查的人中,至少有多少人的休闲方式是运动?参考公式:=,其中n=a+b+c+d.参考数据:19.若n为正整数,试比较3·2n-1与n2+3的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论,并用数学归纳法证明.20.为防止风沙危害,某地决定建设防护绿化带,种植树、沙柳等植物.某人一次种植了n株沙柳.各株沙柳的成活与否是相互独立的,成活率为p,设ξ为成活沙柳的株数,数学期望E(ξ)为3,标准差为.(1)求n和p的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种.求需要补种沙柳的概率.21.已知函数f(x)=(ax-x2)ex.(1)当a=2时,求f(x)的单调递减区间;(2)若函数f(x)在(-1,1]上单调递增,求a的取值围;(3)函数f(x)是否可为R上的单调函数?若是,求出a的取值围,若不是,说明理由.22.设函数f(x)=|x-a|+x.(1)当a=2时,求函数f(x)的值域;(2)若g(x)=|x+1|,求不等式g(x)-2>x-f(x)恒成立时a的取值围.

答案解析1.B2.A3.C4.A5.D【解析】此题可化归为:圆上9个点可组成多少个四边形,每个四边形的对角线的交点即为所求,所以,交点有=126(个)6.C7.A8.D9.C10.C11.D【解析】由≥且≥,解得15≤k≤16,即P(X=15)=P(X=16)最大12.A【解析】由题意得f′(x)=3ax2+2bx+c,∵x1,x2是方程f′(x)=0的两个根,∴x1+x2=-2b3a,x1·x2=c3a,∴|x1-x2|2=(x+x2)2-4x1·x2=∵a+b+c=0,∴c=-a-b,∴|x1-x2|2=4b2-12ac9a2=49(ba)∵f′(0)·f′(1)>0,f′(0)=c=-(a+b),且f′(1)=3a+2b+c=2a+b,∴(a+b)(2a+b)<0,即2a2+3ab+b2<0,∵a≠0,两边同除以a2,得(ba)2+3ba+2<0,解得-2<由二次函数的性质可得,当ba=-32时,|x1-x2|2有最小值为13,当ba趋于-1时,|x1-x2|故|x1-x2|2∈[13,49),故|x1-x2|∈[3313.0.954414.S△ABC2=S△BCM·S15.【答案】M<1【解析】∴M==1.16.【答案】15【解析】具有伙伴关系的元素组有-1;1;,2;,3;共4组,所以集合M的所有非空子集中,具有伙伴关系的非空集合中的元素,可以是具有伙伴关系的元素组中的任一组、二组、三组、四组,又集合中的元素是无序的,因此,所求集合的个数为+++=15.17.解(1)已知一元二次方程x2-ax+1=0(a∈R),若x=34+74i是方程的根,则x=34(34+74i)+(34-74i)=a,解得(2)x1,x2是方程x2-ax+1=0的两个虚根,不妨设x1=a-4-a2i2,x2|x1-1|>|x2|,∴(a2-1)2+(-4-a22)2>(a2)2∴a<1.综上,-2<a<1.18.【解】(1)依题意,被调查的男性人数为,其中有人的休闲方式是运动;被调查的女性人数为,其中有人的休闲方式是运动,则2×2列联表如图。(2)由表中数据,得=,要使在犯错误的概率不超过0.05的前提下,认为“性别与休闲方式有关”,则≥3.841,∴≥3.841,解得n≥.276.又n∈N*且∈N*,∴n≥140,即本次被调查的人数至少是140.(3)由(2)可知,140×=56,即本次被调查的人中,至少有56人的休闲方式是运动.19.解当n=1时,3·2n-1<n2+3;n=2时,3·2n-1<n2+3;n=3时,3·2n-1=n2+3;n=4时,3·2n-1>n2+3;n=5时,3·2n-1>n2+3;猜想:当n≥4且n∈N*时,3·2n-1>n2+3.证明:当n=4时,3·2n-1>n2+3成立,假设当n=k(k≥4且k∈N*)时,3·2k-1>k2+3成立,则当n=k+1时,左式=3·2k=2·3·2k-1>2(k2+3),右式=(k+1)2+3,因为2(k2+3)-[(k+1)2+3]=k2-2k+2=(k-1)2+1>0,所以,左式>右式,即当n=k+1时,猜想也成立.综上所述,当n≥4且n∈N*时,3·2n-1>n2+3成立.20.【解】由题意知,ξ服从二项分布B(n,p),P(ξ=k)=,k=0,1,…,n.(1)由E(ξ)=np=3,D(ξ)=np(1-p)=,得1-p=,从而n=6,p=.ξ的分布列为(2)记“需要补种沙柳”为事件A,则P(A)=P(ξ≤3),得P(A)=,或P(A)=1-P(ξ>3)=1-=.所以需要补种沙柳的概率为.21.【解】(1)当a=2时,f(x)=(2x-x2)ex.f′(x)=(2-2x)ex+(2x-x2)ex=(2-x2)ex,令f′(x)≤0,即2-x2≤0,解得x≤-2或x≥2,所以函数f(x)的单调递减区间为(-∞,-2)和(2,+∞).(2)函数f(x)在(-1,1]上单调递增,所以f′(x)≥0,对于x∈(-1,1]都成立,即f′(x)=[a+(a-2)x-x2]ex≥0,对于x∈(-1,1]都成立,故有a≥x2+2xx+1=x令g(x)=x+1-1x+1,则g′(x)=1+1故g(x)在(-1,1]上单调递增,g(x)max=g(1)=32所以a的取值围是[32(3)假设f(x)为R的上单调函数,则为R的上单调递增函数或单调递减函数.①若函数f(x)为R上单调递增函数,则f′(x)≥0,对于x∈R都成立,即[a+(a-2)x-x2]ex≥0恒成立.由ex>0,x2-(a-2)x-a≤0对于x∈R都恒成立,由h(x)=x2-(a-2)x-a是开口向上的抛物线,则h(x)≤0不可能恒成立,所以f(x)不可能为R上的单调增函数.②若函数f(x)为R上单调递减函数,则f′(x)≤0,对于x∈R都成立,即[a+(a-2)x-x2]ex≤0恒成立,由ex>0,x2-(a-2)x-a≥0对于x∈R都恒成立,故由Δ=(a-2)2+4a≤0,整理得a2+4≤0,显然不成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论