钻削力扰动作用下的机器人制孔毛刺预测方法研究_第1页
钻削力扰动作用下的机器人制孔毛刺预测方法研究_第2页
钻削力扰动作用下的机器人制孔毛刺预测方法研究_第3页
钻削力扰动作用下的机器人制孔毛刺预测方法研究_第4页
钻削力扰动作用下的机器人制孔毛刺预测方法研究_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

钻削力扰动作用下的机器人制孔毛刺预测方法研究摘要:钻削力扰动是制孔过程中一种重要的干扰源,它对机器人制孔的质量和效率具有很大的影响。本文针对钻削力扰动对机器人制孔毛刺产生的影响进行了研究,提出了一种新的机器人制孔毛刺预测方法。

首先介绍了制孔过程中的钻削力扰动机制,并分析了钻削力扰动对制孔毛刺产生的影响。接着提出了一种基于最小二乘支持向量机(LSSVM)的机器人制孔毛刺预测方法。该方法采用了LSSVM算法对钻削力扰动和制孔毛刺之间的关系进行建模和预测。经实验验证,该方法可以有效地预测机器人制孔毛刺的产生情况,并提高制孔质量和效率。

本文还分析了机器人制孔中的其他干扰源对毛刺的产生影响,并提出了相应的干扰消除方法。最后,结合实验结果进一步讨论了该方法的优缺点,以及未来的发展方向。

关键词:钻削力扰动;机器人制孔;毛刺预测;最小二乘支持向量机;干扰消除

Abstract:Drillingforcedisturbanceisanimportantinterferencesourceduringholedrilling,whichhasagreatinfluenceonthequalityandefficiencyofrobotholedrilling.Thispaperstudiestheinfluenceofdrillingforcedisturbanceonthegenerationofburrsinrobotholedrilling,andproposesanewmethodforpredictingburrsinrobotholedrilling.

First,thedrillingforcedisturbancemechanismduringholedrillingisintroduced,andtheinfluenceofdrillingforcedisturbanceonthegenerationofburrsisanalyzed.Then,aburrpredictionmethodbasedonleastsquaressupportvectormachine(LSSVM)isproposed.ThismethodusesLSSVMalgorithmtomodelandpredicttherelationshipbetweendrillingforcedisturbanceandburrsinholedrilling.Throughexperiments,themethodcaneffectivelypredictthegenerationofburrsinrobotholedrilling,andimprovethequalityandefficiencyofholedrilling.

Thispaperalsoanalyzestheimpactofotherinterferencesourcesinrobotholedrillingonthegenerationofburrs,andproposescorrespondinginterferenceeliminationmethods.Finally,basedonexperimentalresults,theadvantagesanddisadvantagesofthemethodandfuturedevelopmentdirectionsarefurtherdiscussed.

Keywords:drillingforcedisturbance;robotholedrilling;burrprediction;leastsquaressupportvectormachine;interferenceeliminationRobotholedrillinghasbecomeanimportantmanufacturingprocessinindustriessuchasaerospaceandautomotiveduetoitsefficiencyandaccuracy.However,thegenerationofburrsduringthedrillingprocesshasbeenamajorissuethataffectsthequalityandreliabilityoftheproducts.

Inthisstudy,weintroduceamethodtopredicttheoccurrenceofburrsduringrobotholedrillingbyusingaleastsquaressupportvectormachine.Thedrillingforcedisturbanceisconsideredasthemainfactorthataffectstheformationofburrs.Byanalyzingandmodelingtherelationshipbetweenthedrillingforcedisturbanceandtheburrformation,theleastsquaressupportvectormachinecanaccuratelypredictthepresenceofburrsbeforethedrillingprocess.

Moreover,wealsoinvestigatedtheimpactofotherinterferencesources,suchastherobotmotion,drillbitwear,andworkpiecematerialproperties,ontheformationofburrs.Correspondinginterferenceeliminationmethodsareproposedtoreducetheimpactoftheseinterferencesourcesandimprovetheprecisionofrobotholedrilling.

Experimentalresultsshowtheeffectivenessoftheproposedmethodinpredictingtheoccurrenceofburrsandreducingtheinterferencesources.However,therearestillsomelimitationstobeovercome,suchasthecomplexityoftheprocessandthediversityofworkpiecematerials.FurtherresearchcanbedonetooptimizethemethodandexplorenewapproachestoimprovetheefficiencyandaccuracyofrobotholedrillingInadditiontothelimitationsmentionedabove,therearealsoseveralotherareaswherefurtherresearchinrobotholedrillingcanbeconducted.Onesuchareaisthedevelopmentofnewalgorithmsandcontrolstrategiestoimprovetheprecisionandspeedofthedrillingprocess.

Currentmethodsrelyonsimplefeedbackcontrolmechanismsthatadjustthepositionandspeedofthedrillinresponsetosensordata.Whilethesetechniqueshaveproveneffectiveinsomesituations,theyarenotalwaysoptimalandcanleadtoerrorsorinefficienciesinthedrillingprocess.

Newalgorithmsthatincorporateadvancedsensordataprocessingtechniques,suchasmachinelearningorartificialintelligence,couldpotentiallyimprovetheaccuracyandspeedofdrillingbybetterpredictingandcompensatingfordisturbancesandvariationsintheworkpiecematerial.

Anotherareaofresearchisthedevelopmentofnewdrillingtoolsandmaterialsthatarebettersuitedforuseinroboticsystems.Traditionaldrillingtoolsareoftenbulkyandheavy,makingthemdifficulttohandleandcontrolwitharobotarm.Theymayalsogenerateexcessiveheatorvibration,whichcancausedamagetotheworkpieceoraffecttheaccuracyofthedrillingprocess.

Newmaterialsanddesignsfordrillingtoolscouldpotentiallyaddresstheseissuesbyreducingweightandimprovingthermalorvibrationdampingproperties.Thiscouldnotonlyimprovetheoverallperformanceoftherobotdrillingsystem,butalsoincreaseitsversatilityandcompatibilitywithawiderrangeofmaterialsandworkpiecegeometries.

Finally,furtherresearchcouldbeconductedontheintegrationofrobotholedrillingwithothermanufacturingprocessesinordertocreatemoreefficientandstreamlinedmanufacturingsystems.Forexample,drillingcouldbeintegratedwithmillingorturningoperationstocreatecomplexgeometrieswithmultiplefeaturesinasinglesetup.Thiswouldreducetheneedformultiplesetupsandtoolchanges,leadingtofasterproductiontimesandlowercosts.

Overall,whilesignificantprogresshasbeenmadeinthefieldofrobotholedrilling,thereisstillmuchtobedoneinordertooptimizeperformance,improveefficiency,andreducecosts.Byaddressingtheareasofresearchdescribedabove,itispossibletocreateevenmoreadvancedandcapablerobotdrillingsystemsthatcanhelpdrivethemanufacturingindustryforwardOneofthekeyareasforfurtherdevelopmentinrobotholedrillingisinthefieldofadvancedsensingandfeedbacksystems.Whilecurrentsystemsarealreadyquitesophisticated,theystillhavelimitationswhenitcomestodetectingdeviationsfromtheplanneddrillingpathinreal-time.Thiscanleadtoerrors,forexample,iftherobotencountersapreviouslyundetectedobstacleorifthematerialbeingdrilledisunexpectedlyharderorsofterthananticipated.

Onepossiblesolutiontothisproblemisthedevelopmentofsmartsensorsthatarecapableofdetectingchangesinthematerialbeingdrilledoridentifyingobstaclesintherobot'spath.Thiswouldallowtherobottomakereal-timeadjustmentstoitsdrillingpathandavoiderrorsordelays.Additionally,advancesinartificialintelligenceandmachinelearningcouldalsobeusedtohelptherobotanticipateandadapttochangesinthedrillingenvironment.

Anotherareaforfurtherdevelopmentisinthedesignandoptimizationofthedrillingtoolitself.Whilecurrentrobotdrillingsystemsarecapableofusingawiderangeofdrillingtools,thereisstillroomforimprovementintermsoftooldurability,efficiency,andversatility.Forexample,researcherscouldexploretheuseofnewmaterialsorcoatingsthatcanimprovethewearresistanceofthetool,ordevelopalternativedrillingtechnologiesthatcaneliminatetheneedforcoolantorreducetoolwear.

Finally,thereisalsoaneedforfurtherdevelopmentintheareaofhuman-robotcollaboration.Whilerobotscanperformmanytasksmoreefficientlyandaccuratelythanhumans,therearestillsometasksthatrequirehumaninput,suchasselectingandpositioningtheworkpieceormonitoringthedrillingprocessforqualitycontrol.Toaddressthis,researcherscouldexploretheuseofcollaborativerobotsystemsthatallowhumansandrobotstoworktogethermoreseamlessly,withtherobothandlingthemorephysicallydemandingorrepetitivetaskswhilethehumanprovidesoversightandguidance.

Overall,thereissignificantpotentialforfurtherdevelopmentandinnovationinthefieldofrobotholedrilling.Bycontinuingtoexplorenewtechnolog

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论