2023年山东省济南第二中学数学高一下期末学业质量监测模拟试题含解析_第1页
2023年山东省济南第二中学数学高一下期末学业质量监测模拟试题含解析_第2页
2023年山东省济南第二中学数学高一下期末学业质量监测模拟试题含解析_第3页
2023年山东省济南第二中学数学高一下期末学业质量监测模拟试题含解析_第4页
2023年山东省济南第二中学数学高一下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中同时具有性质:①最小正周期是,②图象关于点对称,③在上为减函数的是()A. B.C. D.2.已知圆的圆心与点关于直线对称,直线与圆相交于,两点,且,则圆的半径长为()A. B. C.3 D.3.在区间上随机地取一个数,则事件“”发生的概率为()A. B. C. D.4.已知两点,,若直线与线段相交,则实数的取值范围是()A. B.C. D.5.已知在角终边上,若,则()A. B.-2 C.2 D.6.执行如图所示的程序框图,则输出的()A.3 B.4 C.5 D.67.已知向量,且,则的值为()A.6 B.-6 C. D.8.在等差数列中,,则等于()A.2 B.18 C.4 D.99.已知向量,,且,,,则一定共线的三点是()A.A,B,D B.A,B,C C.B,C,D D.A,C,D10.已知等差数列的前项之和为,前项和为,则它的前项的和为()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.过点,且与直线垂直的直线方程为.12.给出以下四个结论:①平行于同一直线的两条直线互相平行;②垂直于同一平面的两个平面互相平行;③若,是两个平面;,是异面直线;且,,,,则;④若三棱锥中,,,则点在平面内的射影是的垂心;其中错误结论的序号为__________.(要求填上所有错误结论的序号)13.在△中,,,,则_________.14.已知一组数1,2,m,6,7的平均数为4,则这组数的方差为______.15.已知圆上有两个点到直线的距离为3,则半径的取值范围是________16.用数学归纳法证明时,从“到”,左边需增乘的代数式是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,A,B,C所对的边分别为,满足.(I)求角A的大小;(Ⅱ)若,D为BC的中点,且的值.18.已知向量,,函数.(1)若且,求;(2)求函数的最小正周期T及单调递增区间.19.已知数列满足关系式,.(1)用表示,,;(2)根据上面的结果猜想用和表示的表达式,并用数学归纳法证之.20.如图,在四棱锥中,平面平面,,且,.(Ⅰ)求证:;(Ⅱ)若为的中点,求证:平面.21.如图,在中,,D为延长线上一点,且,,.(1)求的长度;(2)求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据周期公式排除A选项;根据正弦函数的单调性,排除B选项;将代入函数解析式,排除D选项;根据周期公式,将代入函数解析式,余弦函数的单调性判断C选项正确.【详解】对于A项,,故A错误;对于B项,,,函数在上单调递增,则函数在上单调递增,故B错误;对于C项,;当时,,则其图象关于点对称;当,,函数在区间上单调递减,则函数在区间单调递减,故C正确;对于D项,当时,,故D错误;故选:C【点睛】本题主要考查了求正余弦函数的周期,单调性以及对称性的应用,属于中档题.2、A【解析】

根据题干画出简图,在直角中,通过弦心距和半径关系通过勾股定理求解即可。【详解】圆的圆心与点关于直线对称,所以,,设圆的半径为,如下图,圆心到直线的距离为:,,【点睛】直线和圆相交问题一般两种方法:第一,通过弦心距d和半径r的关系,通过勾股定理求解即可。第二,直线方程和圆的方程联立,则。两种思路,此题属于中档题型。3、A【解析】由得,,所以,由几何概型概率的计算公式得,,故选.考点:1.几何概型;2.对数函数的性质.4、D【解析】

找出直线与PQ相交的两种临界情况,求斜率即可.【详解】因为直线恒过定点,根据题意,作图如下:直线与线段PQ相交的临界情况分别为直线MP和直线MQ,已知,,由图可知:当直线绕着点M向轴旋转时,其斜率范围为:;当直线与轴重合时,没有斜率;当直线绕着点M从轴至MP旋转时,其斜率范围为:综上所述:,故选:D.【点睛】本题考查直线斜率的计算,直线斜率与倾斜角的关系,属基础题.5、C【解析】

由正弦函数的定义求解.【详解】,显然,∴.故选C.【点睛】本题考查正弦函数的定义,属于基础题.解题时注意的符号.6、C【解析】

由已知中的程序语句可知:该程序的功能是利用循环结构计算S的值并输出相应变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得

S=0,n=1

S=2,n=2

满足条件S<30,执行循环体,S=2+4=6,n=3

满足条件S<30,执行循环体,S=6+8=14,n=4

满足条件S<30,执行循环体,S=14+16=30,n=1

此时,不满足条件S<30,退出循环,输出n的值为1.

故选C.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.7、A【解析】

两向量平行,內积等于外积。【详解】,所以选A.【点睛】本题考查两向量平行的坐标运算,属于基础题。8、D【解析】

利用等差数列性质得到,,计算得到答案.【详解】等差数列中,故选:D【点睛】本题考查了等差数列的计算,利用性质可以简化运算,是解题的关键.9、A【解析】

根据向量共线定理进行判断即可.【详解】因为,且,有公共点B,所以A,B,D三点共线.故选:A.【点睛】本题考查了用向量共线定理证明三点共线问题,属于常考题.10、C【解析】试题分析:由于等差数列中也成等差数列,即成等差数列,所以,故选C.考点:等差数列前项和的性质.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

直线垂直表示斜率乘积为-1,所以可得新直线斜率,代入点即可.【详解】直线的斜率等于-1,所以与之垂直直线斜率,再通过点斜式直线方程:,即.【点睛】此题考查直线垂直,直线垂直表示两直线斜率之积为-1,属于简单题目.12、②【解析】

③①可由课本推论知正确;②可举反例;④可进行证明.【详解】命题①平行于同一直线的两条直线互相平行,由课本推论知是正确的;②垂直于同一平面的两个平面互相平行,是错误的,例如正方体的上底面,前面和右侧面,是互相垂直的关系;③根据课本推论知结论正确;④若三棱锥中,,,则点在平面内的射影是的垂心这一结论是正确的;作出B在底面的射影O,连结AO,DO,则,同理,,进而得到O为三角形的垂心.

故答案为②【点睛】这个题目考查了命题真假的判断,一般这类题目可以通过课本的性质或者结论进行判断;也可以通过举反例来解决这个问题.13、【解析】

利用余弦定理求得的值,进而求得的大小.【详解】由余弦定理得,由于,故.【点睛】本小题主要考查余弦定理解三角形,考查特殊角的三角函数值,属于基础题.14、【解析】

先根据平均数计算出的值,再根据方差的计算公式计算出这组数的方差.【详解】依题意.所以方差为.故答案为:.【点睛】本小题主要考查平均数和方差的有关计算,考查运算求解能力,属于基础题.15、【解析】

由圆上有两个点到直线的距离为3,先求出圆心到直线的距离,得到不等关系式,即可求解.【详解】由题意,圆的圆心坐标为,半径为,则圆心到直线的距离为,又因为圆上有两个点到直线的距离为3,则,解得,即圆的半径的取值范围是.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中合理应用圆心到直线的距离,结合图象得到半径的不等关系式是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.16、.【解析】

从到时左边需增乘的代数式是,化简即可得出.【详解】假设时命题成立,则,当时,从到时左边需增乘的代数式是.故答案为:.【点睛】本题考查数学归纳法的应用,考查推理能力与计算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I);(II).【解析】

(I)得,求出.(Ⅱ)由题意可知,化简得,再结合余弦定理求出,再利用正弦定理求出的值.【详解】(I),所以,所以因为,所以,所以(Ⅱ)由题意可知:所以所以又因为,所以,因为,所以由正弦定理可得,所以【点睛】本题主要考查三角恒等变换,考查正弦定理余弦定理解三角形,意在考查学生对这些知识的掌握水平和分析推理能力.18、(1)(2)最小正周期,的单调递增区间为:.【解析】

(1)计算平面向量的数量积得出函数的解析式,求出时的值;(2)根据的解析式,求出它的最小正周期T及单调递增区间.【详解】函数时,,解得又;(2)函数它的最小正周期:令故:的单调递增区间为:【点睛】本题考查了正弦型函数的性质,考查了学生综合分析,转化与划归,数形结合的能力,属于中档题.19、(1),,(2)猜想:,证明见解析【解析】

(1)根据递推关系依次代入求解,(2)根据规律猜想,再利用数学归纳法证明【详解】解:(1),∴,,;(2)猜想:.证明:当时,结论显然成立;假设时结论成立,即,则时,,即时结论成立.综上,对时结论成立.【点睛】本题考查归纳猜想与数学归纳法证明,考查基本分析论证能力,属基础题20、(Ⅰ)见解析;(Ⅱ)见解析【解析】

(Ⅰ)线线垂直先求线面垂直,即平面,进而可得;(Ⅱ)连接D与PC的中点F,只需证明即可.【详解】(Ⅰ)因为,所以.因为平面平面,且平面平面,所以平面.因为平面,所以.(Ⅱ)证明:取中点,连接,.因为为中点,所以,且.因为,且,所以,且,所以四边形为平行四边形.所以.因为平面,平面,所以平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论