版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆与圆恰有三条公切线,则实数的值是()A.4 B.6 C.16 D.362.如图,为正方体,下面结论错误的是()A.异面直线与所成的角为45° B.平面C.平面平面 D.异面直线与所成的角为45°3.如图,在中,面,,是的中点,则图中直角三角形的个数是()A.5 B.6 C.7 D.84.函数的最小正周期为π,若其图象向左平移个单位后得到的函数为奇函数,则函数f(x)的图象()A.关于点对称 B.关于点对称C.关于直线对称 D.关于直线对称5.已知中,,,的对边分别是,,,且,,,则边上的中线的长为()A. B.C.或 D.或6.已知向量,,则()A.-1 B.-2 C.1 D.07.已知两点,若点是圆上的动点,则面积的最大值为()A.13 B.3 C. D.8.已知圆C与直线和直线都相切,且圆心C在直线上,则圆C的方程是()A. B.C. D.9.若角的顶点与坐标原点重合,始边与x轴的正半轴重合,终边经过点,则()A. B. C. D.10.已知是单位向量,.若向量满足()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若实数,满足,则的最小值为________.12.已知等差数列的公差为2,若成等比数列,则________.13.设等比数列的公比,前项和为,则.14.甲、乙两人要到某地参加活动,他们都随机从火车、汽车、飞机三种交通工具中选择一种,则他们选择相同交通工具的概率为_________.15.函数y=sin2x+2sin2x的最小正周期T为_______.16.若是方程的解,其中,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知矩形中,,,M是以为直径的半圆周上的任意一点(与C,D均不重合),且平面平面.(1)求证:平面平面;(2)当四棱锥的体积最大时,求与所成的角18.在中,内角,,的对边分别为,已知.(1)求角的大小;(2)若,且,求的面积.19.某地统计局调查了10000名居民的月收入,并根据所得数据绘制了样本的频率分布直方图如图所示.(1)求居民月收入在[3000,3500)内的频率;(2)根据频率分布直方图求出样本数据的中位数;(3)为了分析居民的月收入与年龄、职业等方面的关系,必须按月收入再从这10000中用分层抽样的方法抽出100人做进一步分析,则应从月收入在[2500,3000)内的居民中抽取多少人?20.在中,,且的边a,b,c所对的角分别为A,B,C.(1)求的值;(2)若,试求周长的最大值.21.做一个体积为,高为2m的长方体容器,问底面的长和宽分别为多少时,所用的材料表面积最少?并求出其最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
两圆外切时,有三条公切线.【详解】圆标准方程为,∵两圆有三条公切线,∴两圆外切,∴,.故选C.【点睛】本题考查圆与圆的位置关系,考查直线与圆的位置关系.两圆的公切线条数:两圆外离时,有4条公切线,两圆外切时,有3条公切线,两圆相交时,有2条公切线,两圆内切时,有1条公切线,两圆内含时,无无公切线.2、A【解析】
根据正方体性质,依次证明线面平行和面面平行,根据直线的平行关系求异面直线的夹角.【详解】根据正方体性质,,所以异面直线与所成的角等于,,,所以不等于45°,所以A选项说法不正确;,四边形为平行四边形,,平面,平面,所以平面,所以B选项说法正确;同理可证:平面,是平面内两条相交直线,所以平面平面,所以C选项说法正确;,异面直线与所成的角等于,所以D选项说法正确.故选:A【点睛】此题考查线面平行和面面平行的判定,根据平行关系求异面直线的夹角,考查空间线线平行和线面平行关系的掌握3、C【解析】试题分析:因为面,所以,则三角形为直角三角形,因为,所以,所以三角形是直角三角形,易证,所以面,即,则三角形为直角三角形,即共有7个直角三角形;故选C.考点:空间中垂直关系的转化.4、C【解析】
利用最小正周期为π,求出的值,根据平移得出,然后利用对称性求解.【详解】因为函数的最小正周期为π,所以,图象向左平移个单位后得到,由得到的函数是奇函数可得,即.令得,,故A,B均不正确;令得,,时可得C正确.故选C.【点睛】本题主要考查三角函数的图像变换和性质.平移变换时注意平移方向和对解析式的影响,性质求解一般利用整体换元意识来处理.5、C【解析】
由已知利用余弦定理可得,解得a值,由已知可求中线,在中,由余弦定理即可计算AB边上中线的长.【详解】解:,由余弦定理,可得,整理可得:,解得或1.如图,CD为AB边上的中线,则,在中,由余弦定理,可得:,或,解得AB边上的中线或.故选C.【点睛】本题考查余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.6、C【解析】
根据向量数量积的坐标运算,得到答案.【详解】向量,,所以.故选:C.【点睛】本题考查向量数量积的坐标运算,属于简单题.7、C【解析】
先求出直线方程,然后计算出圆心到直线的距离,根据面积的最大时,以及高最大的条件,可得结果.【详解】由,利用直线的截距式所以直线方程为:即由圆,即所以圆心为,半径为则圆心到直线的距离为要使面积的最大,则圆上的点到最大距离为所以面积的最大值为故选:C【点睛】本题考查圆与直线的几何关系以及点到直线的距离,属基础题.8、B【解析】
设出圆的方程,利用圆心到直线的距离列出方程求解即可【详解】∵圆心在直线上,∴可设圆心为,设所求圆的方程为,则由题意,解得∴所求圆的方程为.选B【点睛】直线与圆的问题绝大多数都是转化为圆心到直线的距离公式进行求解9、C【解析】
根据三角函数定义结合正弦的二倍角公式计算即可【详解】由题意,∴,,.故选:C.【点睛】本题考查三角函数的定义,考查二倍角的正弦公式,掌握三角函数定义是解题关键.10、A【解析】
因为,,做出图形可知,当且仅当与方向相反且时,取到最大值;最大值为;当且仅当与方向相同且时,取到最小值;最小值为.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由题意可得=≥2=2,由不等式的性质变形可得.【详解】∵正实数a,b满足,∴=≥2=2,∴ab≥2当且仅当=即a=且b=2时取等号.故答案为2.【点睛】本题考查基本不等式求最值,涉及不等式的性质,属基础题.12、【解析】
利用等差数列{an}的公差为1,a1,a3,a4成等比数列,求出a1,即可求出a1.【详解】∵等差数列{an}的公差为1,a1,a3,a4成等比数列,
∴(a1+4)1=a1(a1+2),
∴a1=-8,
∴a1=-2.
故答案为-2..【点睛】本题考查等比数列的性质,考查等差数列的通项,考查学生的计算能力,属基础题..13、15【解析】分析:运用等比数列的前n项和公式与数列通项公式即可得出的值.详解:数列为等比数列,故答案为15.点睛:本题考查了等比数列的通项公式与前n项和公式,考查学生对基本概念的掌握能力与计算能力.14、【解析】
利用古典概型的概率求解.【详解】甲、乙两人选择交通工具总的选择有种,他们选择相同交通工具有3种情况,所以他们选择相同交通工具的概率为.故答案为:.【点睛】本题考查古典概型,要用计数原理进行计数,属于基础题.15、【解析】考点:此题主要考查三角函数的概念、化简、性质,考查运算能力.16、或【解析】
将代入方程,化简结合余弦函数的性质即可求解.【详解】由题意可得:,即所以或又所以或故答案为:或【点睛】本题主要考查了三角函数求值问题,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】
(1)证明,得到平面,得到答案.(2)过点M作于点E,当M为半圆弧的中点时,四棱锥的体积最大,作于F,连接,与所成的角即与所成的角,计算得到答案.【详解】(1)为直径,,已知平面平面,.平面,所以,又,平面,又平面,∴平面平面.(2)过点M作于点E,∵平面平面,平面,即为四棱锥的高,又底面面积为定值.所以当M为半圆弧的中点时,四棱锥的体积最大.作于F,连接,,与所成的角即与所成的角.在直角中,,,所以.,故与所成的角为.【点睛】本题考查了面面垂直,体积的最值,异面直线夹角,意在考查学生的空间想象能力和计算能力.18、(1);(2).【解析】
(1)由二倍角公式得,求得则角可求;(2),得,由正弦定理得,再结合余弦定理得则面积可求【详解】(1)因为,所以,解得,因为,所以;(2)因为,所以,由正弦定理得所以,由余弦定理,,所以,所以.【点睛】本题考查二倍角公式,正余弦定理解三角形,准确计算是关键,是基础题19、(1)0.15(2)2400(3)25人【解析】
(1)由频率分布直方图计算可得月收入在[3000,3500)内的频率;(2)分别计算小长方形的面积值,利用中位数的特点即可确定中位数的值;(3)首先确定10000人中月收入在[2500,3000]内的人数,然后结合分层抽样的特点可得应抽取的人数.【详解】(1)居民月收入在[3000,3500]内的频率为(2)因为,,,,所以样本数据的中位数为.(3)居民月收入在[2500,3000]内的频率为,所以这10000人中月收入在[2500,3000]内的人数为.从这10000人中用分层抽样的方法抽出100人,则应从月收入在[2500,3000]内的居民中抽取(人).【点睛】利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.20、(1)(2)【解析】
(1)利用三角公式化简得到答案.(2)利用余弦定理得到,再利用均值不等式得到,得到答案.【详解】(1)原式(2),时等号成立.周长的最大值为【点睛】本题考查了三角恒等变换,余弦定理,均值不等式,周长的最大值,意在考查学生解决问题的能力.21、长和宽均为4m时,最小值为64【解析】
利用体积求得ab=16,只需表示出表面积,结合高为2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度云南省高校教师资格证之高等教育心理学题库练习试卷B卷附答案
- 2023年异噻唑啉酮投资申请报告
- 加氢工艺理论考试题库及答案
- 福建师范大学《移动通信系统优化》2021-2022学年第一学期期末试卷
- 福建师范大学《体育统计学》2023-2024学年第一学期期末试卷
- 果园亏损财务分析报告示例
- 福建师范大学《环境监测实验》2023-2024学年第一学期期末试卷
- 福建师范大学《关系管理》2023-2024学年第一学期期末试卷
- 第二章 能量和营养素第一节基本概念课件
- 机械加工常用材料的热处理工艺表
- 茶鲜叶收购合同
- 10kV线路跨越高速公路施工方案(共21页)
- 医院痛点及发展趋势
- (完整word版)研究生英语听说教程答案基础级第三版
- 特种设备事故专项应急预案(天然气公司)
- ISO9001、ISO14001、ISO45001三体系内审计划+内审检查表+内审报告
- 完美型活泼型力量型平和型
- 10以内加减法练习题大全
- 财务管理期末考试试卷及答案
- 飞机加油车压力控制原理
- 专业导论(酒店管理)教案.doc
评论
0/150
提交评论