版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.甲、乙两队准备进行一场篮球赛,根据以往的经验甲队获胜的概率是,两队打平的概率是,则这次比赛乙队不输的概率是()A.- B. C. D.2.若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是()A.1 B.-2 C.1或-2 D.3.为了了解运动员对志愿者服务质量的意见,打算从1200名运动员中抽取一个容量为40的样本,考虑用系统抽样,则分段间隔为A.40 B.20 C.30 D.124.已知是的共轭复数,若复数,则在复平面内对应的点是()A. B. C. D.5.已知点和点,是直线上的一点,则的最小值是()A. B. C. D.6.已知函数,,的零点分别为a,b,c,则()A. B. C. D.7.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|)的部分图象如图所示,则f(x)的解析式为()A.f(x)=sin(x)﹣1 B.f(x)=2sin(x)﹣1C.f(x)=2sin(x)﹣1 D.f(x)=2sin(2x)+18.设集合,集合为函数的定义域,则()A. B. C. D.9.设a>0,b>0,若是和的等比中项,则的最小值为()A.6 B. C.8 D.910.若,则()A. B. C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.在上,满足的的取值范围是______.12.福利彩票“双色球”中红色球由编号为01,02,…,33的33个个体组成,某彩民利用下面的随机数表(下表是随机数表的第一行和第二行)选取6个红色球,选取方法是从随机数表中第1行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第3个红色球的编号为______.4954435482173793232887352056438426349164572455068877047447672176335025839212067613.设为数列的前项和,若,则数列的通项公式为__________.14.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.15.若,,则___________.16.在中,,,则角_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某运动爱好者对自己的步行运动距离(单位:千米)和步行运动时间(单位:分钟)进行统计,得到如下的统计资料:如果与存在线性相关关系,(1)求线性回归方程(精确到0.01);(2)将分钟的时间数据称为有效运动数据,现从这6个时间数据中任取3个,求抽取的3个数据恰有两个为有效运动数据的概率.参考数据:,参考公式:,.18.如图,在中,点在边上,为的平分线,.(1)求;(2)若,,求.19.已知,,函数.(1)求的最小正周期;(2)求的单调增区间.20.已知数列满足,,,.(1)证明:数列是等比数列;(2)求数列的通项公式;(3)证明:.21.在ΔABC中,角A,B,C的对边分别为a,b,c,a=8,c-1(1)若ΔABC有两解,求b的取值范围;(2)若ΔABC的面积为82,B>C,求b-c
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
因为“甲队获胜”与“乙队不输”是对立事件,对立事件的概率之和为1,进而即可求出结果.【详解】由题意,“甲队获胜”与“乙队不输”是对立事件,因为甲队获胜的概率是,所以,这次比赛乙队不输的概率是.故选C【点睛】本题主要考查对立事件的概率问题,熟记对立事件的性质即可,属于常考题型.2、A【解析】
分类讨论直线的斜率情况,然后根据两直线平行的充要条件求解即可得到所求.【详解】①当时,两直线分别为和,此时两直线相交,不合题意.②当时,两直线的斜率都存在,由直线平行可得,解得.综上可得.故选A.【点睛】本题考查两直线平行的等价条件,解题的关键是将问题转化为对直线斜率存在性的讨论.也可利用以下结论求解:若,则且或且.3、C【解析】
根据系统抽样的定义和方法,结合题意可分段的间隔等于个体总数除以样本容量,即可求解.【详解】根据系统抽样的定义和方法,结合题意可分段的间隔,故选C.【点睛】本题主要考查了系统抽样的定义和方法,其中解答中熟记系统抽样的定义和方法是解答的关键,着重考查了推理与运算能力,属于基础题.4、A【解析】由,得,所以在复平面内对应的点为,故选A.5、D【解析】
求出A关于直线l:的对称点为C,则BC即为所求【详解】如下图所示:点,关于直线l:的对称点为C(0,2),连接BC,此时的最小值为故选D.【点睛】本题考查的知识点是两点间距离公式的应用,难度不大,属于中档题.6、B【解析】
,,分别为,,的根,作出,,的图象与直线,观察交点的横坐标的大小关系.【详解】由题意可得,,分别为,,的根,作出,,,的图象,与直线的交点的横坐标分别为,,,由图象可得,故选:.【点睛】本题主要考查了函数的零点,函数的图象,数形结合思想,属于中档题.7、D【解析】
由已知列式求得的值,再由周期求得的值,利用五点作图的第二个点求得的值,即可得到答案.【详解】由题意,根据三角函数的图象,可得,解得,又由,解得,则,又由五点作图的第二个点可得:,解得,所以函数的解析式为,故选D.【点睛】本题主要考查了由的部分图象求解函数的解析式,其中解答中熟记三角函数的五点作图法,以及三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于中档试题.8、B【解析】
解不等式化简集合的表示,求出函数的定义域,表示成集合的形式,运用集合的并集运算法则,结合数轴求出.【详解】因为,所以.又因为函数的定义域为,所以.因此,故本题选B.【点睛】本题考查了集合的并集运算,正确求出对数型函数的定义域,运用数轴是解题的关键.9、D【解析】
试题分析:由题意a>0,b>0,且是和的等比中项,即,则,当且仅当时,即时取等号.考点:重要不等式,等比中项10、D【解析】
将转化为,结合二倍角的正切公式即可求出.【详解】故选D【点睛】本题主要考查了二倍角的正切公式,关键是将转化为,利用二倍角的正切公式求出,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由,结合三角函数线,即可求解,得到答案.【详解】如图所示,因为,所以满足的的取值范围为.【点睛】本题主要考查了特殊角的三角函数值,以及三角函数线的应用,着重考查了推理与运算能力,属于基础题.12、05【解析】
根据给定的随机数表的读取规则,从第一行第6、7列开始,两个数字一组,从左向右读取,重复的或超出编号范围的跳过,即可.【详解】根据随机数表,排除超过33及重复的编号,第一个编号为21,第二个编号为32,第三个编号05,故选出来的第3个红色球的编号为05.【点睛】本题主要考查了简单随机抽样中的随机数表法,属于容易题.13、,【解析】
令时,求出,再令时,求出的值,再检验的值是否符合,由此得出数列的通项公式.【详解】当时,,当时,,不合适上式,当时,,不合适上式,因此,,.故答案为,.【点睛】本题考查利用前项和求数列的通项,考查计算能力,属于中等题.14、【解析】
求出长方体体积与三棱锥的体积后即可得到棱锥的体积与剩下的几何体体积之比.【详解】设长方体长宽高分别为,,,所以长方体体积,三棱锥体积,所以棱锥的体积与剩下的几何体体积的之比为:.故答案为:.【点睛】本题主要考查了长方体体积公式,三棱锥体积公式,属于基础题.15、【解析】
将等式和等式都平方,再将所得两个等式相加,并利用两角和的正弦公式可求出的值.【详解】若,,将上述两等式平方得,①,②,①+②可得,求得,故答案为.【点睛】本题考查利用两角和的正弦公式求值,解题的关键就是将等式进行平方,结合等式结构进行变形计算,考查运算求解能力,属于中等题.16、或【解析】
本题首先可以通过解三角形面积公式得出的值,再根据三角形内角的取值范围得出角的值。【详解】由解三角形面积公式可得:即因为,所以或【点睛】在解三角形过程中,要注意求出来的角的值可能有多种情况。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)先计算所给数据距离、时间的平均值,,利用公式求,再利用回归方程求.(2)由(1)计算的个数,先求从6个中任取3个数据的总的取法,再计算抽取的3个数据恰有两个为有效运动数据的取法,利用古典概型概率计算公式可得所求.【详解】解:(1)依题意得,所以又因为,故线性回归方程为.(2)将的6个值,代入(1)中回归方程可知,前3个小于30,后3个大于30,所以满足分钟的有效运动数据的共有3个,设3个有效运动数据为,另3个不是有效运动数据为,则从6个数据中任取3个共有20种情况(或一一列举),其中,抽取的3个数据恰有两个为有效运动数据的有9种情况,即,,所以从这6个时间数据中任取3个,抽取的3个数据恰有两个为有效运动数据的概率为.【点睛】本题考查线性回归方程的建立,古典概型的概率,考查数据处理能力,运用知识解决实际问题的能力,属于中档题.18、(1)(2)【解析】
(1)令,正弦定理,得,代入面积公式计算得到答案.(2)由题意得到,化简得到,,再利用面积公式得到答案.【详解】(1)因为的平分线,令在中,,由正弦定理,得所以.(2)因为,所以,又由,得,,因为,所以所以.【点睛】本题考查了面积的计算,意在考查学生灵活利用正余弦定理和面积公式解决问题的能力.19、(1)(2)【解析】
(1)直接利用向量的数量积的应用和三角函数关系式的恒等变变换,求出三角函数的关系式,进一步求出函数的最小正周期,即可求得答案.(2)利用(1)的函数关系式和整体思想求出函数的单调区间,即可求得答案.【详解】(1),,函数.(2)由(1)得:令:解得:函数的单调递增区间为:【点睛】本题考查了向量数量积和三角函数求周期,及其求正弦函数单调区间,解题关键是掌握正弦函数周期求法和整体法求正弦函数单调区间的求法,考查了分析能力和计算能力,属于中档题.20、(1)证明见解析;(2);(3)证明见解析.【解析】
(1)由,得,即可得到本题答案;(2)由,得,即可得到本题答案;(3)当时,满足题意;若n是偶数,由,可得;当n是奇数,且时,由,可得,综上,即可得到本题答案.【详解】(1)因为,所以,因为,所以,所以数列是等比数列;(2)因为,所以,所以,又因为,所以,所以是以为首项,为公比的等比数列,所以,所以;(3)①当时,;②若n是偶数,则,所以当n是偶数时,;③当n是奇数,且时,;综上所述,当时,.【点睛】本题主要考查利用构造法证明等比数列并求通项公式,以及数列与不等式的综合问题.21、(1)(8,62);(2)【解析】
(1)由c-13b=acosB,利用正弦定理可得sin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度汽车租赁合同租赁物变更合同范本3篇
- 2024年度车辆融资租赁购车合同模板(含车辆排放标准执行)3篇
- 2024年度矿山开采石方剥离合同2篇
- 2024年度技术开发合同:新能源汽车关键技术研究3篇
- 2024年二零二四年度环保型车间租赁服务协议3篇
- 2024年体育设施建设项目施工合同补充条款3篇
- 2024年山林土地承包经营权转让合同范本-林业生物质能源开发3篇
- 2024年度厂房拆迁补偿与城市景观提升合同3篇
- 2024年度医疗设备采购合同四(高端医疗设备)3篇
- 2024年度农业观光旅游承包经营合同规范3篇
- 大学生职业生涯发展展示
- (高清版)TDT 1071-2022 园地分等定级规程
- 陀螺仪工作原理
- 护工培训完整课件
- 《数字经济与数字化转型》 课件 第一章 数字经济概述
- 设计文件质量检查报告-3
- 国家开放大学《管理英语2》综合练习参考答案
- 2024年中国人寿财产保险股份有限公司招聘笔试参考题库含答案解析
- 教师企业实践总结汇报
- 抖音快手区别分析报告
- 全生命周期成本管理与优化
评论
0/150
提交评论