版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知样本的平均数是10,方差是2,则的值为()A.88 B.96 C.108 D.1102.计算:A. B. C. D.3.若,且,则下列不等式中正确的是()A. B. C. D.4.如图,某人在点处测得某塔在南偏西的方向上,塔顶仰角为,此人沿正南方向前进30米到达处,测得塔顶的仰角为,则塔高为()A.20米 B.15米 C.12米 D.10米5.在中,角所对的边分别为,已知下列条件,只有一个解的是()A.,, B.,,C.,, D.,,6.设,则“”是“”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件7.若正数满足,则的最小值为A. B.C. D.38..设、是关于x的方程的两个不相等的实数根,那么过两点,的直线与圆的位置关系是()A.相离. B.相切. C.相交. D.随m的变化而变化.9.甲、乙两个不透明的袋中各有5个仅颜色不同的球,其中甲袋中有3个红球,2个白球,乙袋中有2个红球,3个白球,现从两袋中各随机取一球,则两球不同颜色的概率为()A. B. C. D.10.若,则下列结论不正确的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数在的递减区间是__________12.若关于的不等式有解,则实数的取值范围为________.13.观察下列式子:你可归纳出的不等式是___________14.函数的图象在点处的切线方程是,则__________.15.已知且,则________16.体积为8的一个正方体,其全面积与球的表面积相等,则球的体积等于________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为的三内角,且其对边分别为.且(1)求的值;(2)若,三角形面积,求的值.18.已知函数().(1)若不等式的解集为,求的取值范围;(2)当时,解不等式;(3)若不等式的解集为,若,求的取值范围.19.已知角的终边经过点,且.(1)求的值;(2)求的值.20.设数列的前n项和为,已知.(Ⅰ)求通项;(Ⅱ)设,求数列的前n项和.21.已知.(Ⅰ)求的最小正周期和单调递增区间;(Ⅱ)求函数在时的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据平均数和方差公式列方程组,得出和的值,再由可求得的值.【详解】由于样本的平均数为,则有,得,由于样本的方差为,有,得,即,,因此,,故选B.【点睛】本题考查利用平均数与方差公式求参数,解题的关键在于平均数与方差公式的应用,考查计算能力,属于中等题.2、A【解析】
根据正弦余弦的二倍角公式化简求解.【详解】,故选A.【点睛】本题考查三角函数的恒等变化,关键在于寻找题目与公式的联系.3、D【解析】
利用不等式的性质依次对选项进行判断。【详解】对于A,当,且异号时,,故A不正确;对于B,当,且都为负数时,,故B不正确;对于C,取,则,故不正确;对于D,由于,,则,所以,即,故D正确;故答案选D【点睛】本题主要考查不等式的基本性质,在解决此类选择题时,可以用特殊值法,依次对选项进行排除。4、B【解析】
设塔底为,塔高为,根据已知条件求得以及角,利用余弦定理列方程,解方程求得塔高的值.【详解】设塔底为,塔高为,故,由于,所以在三角形中,由余弦定理得,解得米.故选B.【点睛】本小题主要考查利用余弦定理解三角形,考查空间想象能力,属于基础题.5、D【解析】
首先根据正弦定理得到,比较与的大小关系即可判定A,B错误,再根据大边对大角即可判定C错误,根据勾股定理即可判定D正确.【详解】对于A,因为,,所以,有两个解,故A错误.对于B,因为,,所以,无解,故B错误.对于C,因为,所以,即,,所以无解,故C错误.对于D,,为直角三角形,故D正确.故选:D【点睛】本题主要考查三角形个数的判断,利用正弦定理判断为解题的关键,属于简单题.6、C【解析】
首先解两个不等式,再根据充分、必要条件的知识选出正确选项.【详解】由解得.由得.所以“”是“”的必要而不充分条件故选:C【点睛】本小题主要考查充分、必要条件的判断,考查绝对值不等式的解法,属于基础题.7、A【解析】
由,利用基本不等式,即可求解,得到答案.【详解】由题意,因为,则,当且仅当,即时等号成立,所以的最小值为,故选A.【点睛】本题主要考查了利用基本不等式求最小值问题,其中解答中合理构造,利用基本不是准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.8、D【解析】直线AB的方程为.即,所以直线AB的方程为,因为,所以,所以,所以直线AB与圆可能相交,也可能相切,也可能相离.9、D【解析】
现从两袋中各随机取一球,基本事件总数,两球不同颜色包含的基本事件个数,由此能求出两球不同颜色的概率.【详解】甲、乙两个不透明的袋中各有5个仅颜色不同的球,其中甲袋中有3个红球、2个白球,乙袋中有2个红球、3个白球,现从两袋中各随机取一球,基本事件总数,两球不同颜色包含的基本事件个数,则两球不同颜色的概率为.故选.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于中档题.10、C【解析】
A、B利用不等式的基本性质即可判断出;C利用指数函数的单调性即可判断出;D利用基本不等式的性质即可判断出.【详解】A,
∵b<a<0,∴−b>−a>0,∴,正确;B,∵b<a<0,∴,正确;C,
,因此C不正确;D,,正确,综上可知:只有C不正确,故选:C.【点睛】本题主要考查不等式的基本性质,属于基础题.解答过程注意考虑参数的正负,确定不等号的方向是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数的性质得出结论.【详解】,由得,,时,.即所求减区间为.故答案为.【点睛】本题考查三角函数的单调性,解题时需把函数化为一个角一个三角函数形式,然后结合正弦函数的单调性求解.12、【解析】
利用判别式可求实数的取值范围.【详解】不等式有解等价于有解,所以,故或,填.【点睛】本题考查一元二次不等式有解问题,属于基础题.13、【解析】
观察三个已知式子的左边和右边,第1个不等式左边可改写成;第2个不等式左边的可改写成,右边的可改写成;第3个不等式的左边可改写成;据此可发现第个不等式的规律.【详解】观察三个已知式子的左边和右边,第1个式子可改写为:,第2个式子可改写为:,第3个式子可改写为:,所以可归纳出第个不等式是:.故答案为:.【点睛】本题考查归纳推理,考查学生分析、解决问题的能力,属于基础题.14、【解析】由导数的几何意义可知,又,所以.15、【解析】
根据数列极限的方法求解即可.【详解】由题,故.又.故.故.故答案为:【点睛】本题主要考查了数列极限的问题,属于基础题型.16、【解析】
由体积为的一个正方体,棱长为,全面积为,则,,球的体积为,故答案为.考点:正方体与球的表面积及体积的算法.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)利用正弦定理化简,并用三角形内角和定理以及两角和的正弦公式化简,求得,由此求得的大小.(2)利用三角形的面积公式求得,利用余弦定理列方程,化简求得的值.【详解】解:(1),得:∵∴,即∵,∴,∵,∴(2)由(1)有,又由余弦定理得:又,,所以【点睛】本小题主要考查三角形的面积公式,考查正弦定理、余弦定理解三角形,考查运算求解能力,属于中档题.18、(1);(2).;(3).【解析】试题分析:(1)对二项式系数进行讨论,可得求出解集即可;(2)分为,,分别解出3种情形对应的不等式即可;(3)将问题转化为对任意的,不等式恒成立,利用分离参数的思想得恒成立,求出其最大值即可.试题解析:(1)①当即时,,不合题意;②当即时,,即,∴,∴(2)即即①当即时,解集为②当即时,∵,∴解集为③当即时,∵,所以,所以∴解集为(3)不等式的解集为,,即对任意的,不等式恒成立,即恒成立,因为恒成立,所以恒成立,设则,,所以,因为,当且仅当时取等号,所以,当且仅当时取等号,所以当时,,所以点睛:本题主要考查了含有参数的一元二次不等式的解法,考查了分类讨论的思想以及转化与化归的能力,难度一般;对于含有参数的一元二次不等式常见的讨论形式有如下几种情形:1、对二次项系数进行讨论;2、对应方程的根进行讨论;3、对应根的大小进行讨论等;考查恒成立问题,正确分离参数是关键,也是常用的一种手段.通过分离参数可转化为或恒成立,即或即可,利用导数知识结合单调性求出或即得解.19、(1);(2)【解析】
(1)由利用任意角的三角函数的定义,列等式可求得实数的值;(2)由(1)可得,利用诱导公式可得原式=,根据同角三角函数的关系,可得结果.【详解】(1)由三角函数的定义可知(2)由(1)知可得原式====【点睛】本题主要考查诱导公式的应用以及三角函数的定义,属于简单题.对诱导公式的记忆不但要正确理解“奇变偶不变,符号看象限”的含义,同时还要加强记忆几组常见的诱导公式,以便提高做题速度.20、(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)当时,根据,构造,利用,两式相减得到,然后验证,得到数列的通项公式;(Ⅱ)由上一问可知.根据零点分和讨论去绝对值,利用分组转化求数列的和.试题解析:(Ⅰ)因为,所以当时,,两式相减得:当时,,因为,得到,解得,,所以数列是首项,公比为5的等比数列,则;(Ⅱ)由题意知,,易知当时,;时,所以当时,,当时,,所以,,……当时,又因为不满足满足上式,所以.考点:1.已知求;2.分组转化法求和.【方法点睛】本题考查了数列求和,一般数列求和方法(1)分组转化法,一般适用于等差数列加等比数列,(2)裂项相消法求和,,等的形式,(3)错位相减法求和,一般适用于等差数列乘以等比数列,(4)倒序相加法求和,一般距首末两项的和是一个常数,这样可以正着写和和倒着写和,两式两式相加除以2得到数列求和,(5)或是具有某些规律求和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《海岸风光模板》课件
- 水准测量外业工作要点
- 赣南医学院《生物化学与分子生物学》2023-2024学年第一学期期末试卷
- 劳动防护用品培训课件
- 身体解剖培训课件
- 2022年上海统计师(中级)《统计基础理论及相关知识》考试题库及答案
- 甘孜职业学院《园林工程实验》2023-2024学年第一学期期末试卷
- 三年级数学上册1时分秒单元概述和课时安排素材新人教版
- 三年级数学上册第三单元测量第4课时千米的认识教案新人教版
- 小学生校园安全教育制度
- 椎间孔镜治疗腰椎间盘突出
- 2024年融媒体中心事业单位考试招考142人500题大全加解析答案
- 2024-2025学年 语文二年级上册统编版期末测试卷(含答案)
- 期末测试题二(含答案)2024-2025学年译林版七年级英语上册
- 大创赛项目书
- 产品质量知识培训课件
- 乳腺旋切手术
- 医护礼仪课件教学课件
- 2024-2030年中国商品混凝土行业产量预测分析投资战略规划研究报告
- 2023年中国奥特莱斯行业白皮书
- 2024年江苏省学业水平合格性考试全真模拟语文试题(解析版)
评论
0/150
提交评论