版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.2.已知数列是公差不为零的等差数列,函数是定义在上的单调递增的奇函数,数列的前项和为,对于命题:①若数列为递增数列,则对一切,②若对一切,,则数列为递增数列③若存在,使得,则存在,使得④若存在,使得,则存在,使得其中正确命题的个数为()A.0 B.1 C.2 D.33.已知向量满足:,,,则()A. B. C. D.4.已知直线(3-2k)x-y-6=0不经过第一象限,则k的取值范围为()A.-∞,32 B.-∞,325.已知数列、、、、,可猜想此数列的通项公式是().A. B.C. D.6.某小吃店的日盈利(单位:百元)与当天平均气温(单位:℃)之间有如下数据:/℃/百元对上述数据进行分析发现,与之间具有线性相关关系,则线性回归方程为()参考公式:A. B.C. D.7.关于x的不等式的解集中,恰有3个整数,则a的取值范围是()A. B. C. D.(4,5)8.的值为()A. B. C. D.9.已知向量,,若,则的值为()A. B.1 C. D.10.如图,一个边长为的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入了粒芝麻,经过统计,落在月牙形图案内的芝麻有粒,则这个月牙图案的面积约为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设α为第二象限角,若sinα=3512.已知直线l过定点,且与两坐标轴围成的三角形的面积为4,则直线l的方程为______.13.已知函数,下列结论中:函数关于对称;函数关于对称;函数在是增函数,将的图象向右平移可得到的图象.其中正确的结论序号为______.14.若集合,,则集合________.15.已知,则的最小值是__________.16.等比数列中首项,公比,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知三棱柱的侧棱垂直于底面,,,点,分别为和的中点.(1)若,求三棱柱的体积;(2)证明:平面;(3)请问当为何值时,平面,试证明你的结论.18.已知时不等式恒成立,求实数的取值范围.19.已知向量满足,且向量与的夹角为.(1)求的值;(2)求.20.设等比数列{}的首项为,公比为q(q为正整数),且满足是与的等差中项;数列{}满足.(1)求数列{}的通项公式;(2)试确定的值,使得数列{}为等差数列:(3)当{}为等差数列时,对每个正整数是,在与之间插入个2,得到一个新数列{},设是数列{}的前项和,试求满足的所有正整数.21.已知集合,数列是公比为的等比数列,且等比数列的前三项满足.(1)求通项公式;(2)若是等比数列的前项和,记,试用等比数列求和公式化简(用含的式子表示)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由几何体的三视图得该几何体是一个底面半径,高的扣在平面上的半圆柱,由此能求出该几何体的体积【详解】由几何体的三视图得:
该几何体是一个底面半径,高的放在平面上的半圆柱,如图,
故该几何体的体积为:故选:D【点睛】本题考查几何体的体积的求法,考查几何体的三视图等基础知识,考查推理能力与计算能力,是中档题.2、C【解析】
利用函数奇偶性和单调性,通过举例和证明逐项分析.【详解】①取,,则,故①错;②对一切,,则,又因为是上的单调递增函数,所以,若递减,设,且,且,所以,则,则,与题设矛盾,所以递增,故②正确;③取,则,,令,所以,但是,故③错误;④因为,所以,所以,则,则,则存在,使得,故④正确.故选:C.【点睛】本题函数性质与数列的综合,难度较难.分析存在性问题时,如果比较难分析,也可以从反面去举例子说明命题不成立,这也是一种常规思路.3、D【解析】
首先根据题中条件求出与的数量积,然后求解即可.【详解】由题有,即,,所以.故选:D.【点睛】本题主要考查了向量的模,属于基础题.4、D【解析】
由题意可得3﹣2k=0或3﹣2k<0,解不等式即可得到所求范围.【详解】直线y=(3﹣2k)x﹣6不经过第一象限,可得3﹣2k=0或3﹣2k<0,解得k≥3则k的取值范围是[32故选:D.【点睛】本题考查直线方程的运用,注意运用直线的斜率为0的情况,考查运算能力,属于基础题.5、D【解析】
利用赋值法逐项排除可得出结果.【详解】对于A选项,,不合乎题意;对于B选项,,不合乎题意;对于C选项,,不合乎题意;对于D选项,当为奇数时,,此时,当为偶数时,,此时,合乎题意.故选:D.【点睛】本题考查利用观察法求数列的通项,考查推理能力,属于中等题.6、B【解析】
计算出,,把数据代入公式计算,即可得到答案.【详解】由题可得:,,,,;所以,,则线性回归方程为;故答案选B【点睛】本题考查线性回归方程的求解,考查学生的计算能力,属于基础题.7、A【解析】
不等式等价转化为,当时,得,当时,得,由此根据解集中恰有3个整数解,能求出的取值范围。【详解】关于的不等式,不等式可变形为,当时,得,此时解集中的整数为2,3,4,则;当时,得,,此时解集中的整数为-2,-1,0,则故a的取值范围是,选:A。【点睛】本题难点在于分类讨论解含参的二次不等式,由于二次不等式对应的二次方程的根大小不确定,所以要对和1的大小进行分类讨论。其次在观察的范围的时候要注意范围的端点能否取到,防止选择错误的B选项。8、B【解析】
直接利用诱导公式结合特殊角的三角函数求解即可.【详解】,故选B.【点睛】本题主要考查诱导公式以及特殊角的三角函数,意在考查对基础知识的掌握情况,属于简单题.9、B【解析】
直接利用向量的数量积列出方程求解即可.【详解】向量,,若,可得2﹣2=0,解得=1,故选B.【点睛】本题考查向量的数量积的应用,考查计算能力,属于基础题.10、A【解析】
根据几何概型直接进行计算即可.【详解】月牙形图案的面积约为:本题正确选项:【点睛】本题考查几何概型的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、-【解析】
先求出cosα,再利用二倍角公式求sin2α【详解】因为α为第二象限角,若sinα=所以cosα=所以sin2α故答案为-【点睛】本题主要考查同角三角函数的平方关系,考查二倍角的正弦公式,意在考查学生对这些知识的理解掌握水平,属于基础题.12、或.【解析】
设直线的方程为,利用已知列出方程,①和②,解方程即可求出直线方程【详解】设直线的方程为.因为点在直线上,所以①.因为直线与两坐标轴围成的三角形的面积为4,所以②.由①②可知或解得或故直线的方程为或,即或.【点睛】本题考查截距式方程和直线与坐标轴形成的三角形面积问题,属于基础题13、【解析】
把化成的型式即可。【详解】由题意得所以对称轴为,对,当时,对称中心为,对。的增区间为,对向右平移得。错【点睛】本题考查三角函数的性质,三角函数变换,意在考查学生对三角函数的图像与性质的掌握情况。14、【解析】由题意,得,,则.15、【解析】分析:利用题设中的等式,把的表达式转化成,展开后,利用基本不等式求得y的最小值.详解:因为,所以,所以(当且仅当时等号成立),则的最小值是,总上所述,答案为.点睛:该题考查的是有关两个正数的整式形式和为定值的情况下求其分式形式和的最值的问题,在求解的过程中,注意相乘,之后应用基本不等式求最值即可,在做乘积运算的时候要注意乘1是不变的,如果不是1,要做除法运算.16、9【解析】
根据等比数列求和公式,将进行转化,然后得到关于和的等式,结合,讨论出和的值,得到答案.【详解】因为等比数列中首项,公比,所以成首项为,公比为的等比数列,共项,所以整理得因为所以可得,等式右边为整数,故等式左边也需要为整数,则应是的约数,所以可得,所以,当时,得,此时当时,得,此时当时,得,此时,所以,故答案为:.【点睛】本题考查等比数列求和的基本量运算,涉及分类讨论的思想,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)4;(2)证明见解析;(3)时,平面,证明见解析.【解析】
(1)直接根据三棱柱体积计算公式求解即可;(2)利用中位线证明面面平行,再根据面面平行的性质定理证明平面;(3)首先设为,利用平面列出关于参数的方程求解即可.【详解】(1)∵三棱柱的侧棱垂直于底面,且,,,∴由三棱柱体积公式得:;(2)证明:取的中点,连接,,∵,分别为和的中点,∴,,∵平面,平面,∴平面,平面,又,∴平面平面,∵平面,∴平面;(3)连接,设,则由题意知,,∵三棱柱的侧棱垂直于底面,∴平面平面,∵,∴,又点是的中点,∴平面,∴,要使平面,只需即可,又∵,∴,∴,即,∴,则时,平面.【点睛】本题考查了三棱柱的体积公式,线面平行的证明,利用线面垂直求参数,属于难题.18、【解析】
讨论的取值范围,分别计算,最后得到答案.【详解】解:(1)当时,恒成立,符合题意(2)当时,不合题意舍去(3)当时,综上所述【点睛】本题考查了不等式恒成立问题,忽略二次系数为0的情况是容易发生的错误.19、(1)(2)【解析】
(1)根据,得到,再由题中数据,即可求出结果;(2)根据向量数量积的运算法则,以及(1)的结果,即可得出结果.【详解】解:(1)因为,所以,即.因为,且向量与的夹角为,所以,即.(2)由(1)可得.【点睛】本题主要考查平面向量的数量积,熟记模的计算公式,以及向量数量积的运算法则即可,属于常考题型.20、(1);(2);(3).【解析】
(1)由已知可求出的值,从而可求数列的通项公式;(2)由已知可求,从而可依次写出,,若数列为等差数列,则有,从而可确定的值;(3)因为,,,检验知,3,4不合题意,适合题意.当时,若后添入的数则一定不适合题意,从而必定是数列中的某一项,设则误解,即有都不合题意.故满足题意的正整数只有.【详解】解(1)因为,所以,解得或(舍),则又,所以(2)由,得,所以,,,则由,得而当时,,由(常数)知此时数列为等差数列(3)因为,易知不合题意,适合题意当时,若后添入的数,则一定不适合题意,从而必是数列中的某一项,则.整理得,等式左边为偶数,等式右边为奇数,所以无解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年鱼塘综合利用租赁协议2篇
- 2024年甲乙双方关于2024年奥运会赞助权益分配的合同
- 2025年度蜜蜂产业联盟合作协议范本3篇
- 2025年度博物馆馆藏品安全保管与修复服务合同3篇
- 2024年规范版夜间出租车租赁合同版
- 临沂大学《民航服务英语(一)》2023-2024学年第一学期期末试卷
- 上海出版印刷高等专科学校《大学英语四》2023-2024学年第一学期期末试卷
- 2024年连锁加盟合同样本
- 郑州职业技术学院《高级程序语言设计》2023-2024学年第一学期期末试卷
- 郑州工商学院《病原生物学B》2023-2024学年第一学期期末试卷
- 色彩基础知识ppt
- 加油站冬季安全教育
- 皮尔逊Ⅲ型曲线模比系数计算(共享版).xls
- 专业群负责人专业负责人和课程负责人职责
- 腹膜透析并发腹膜炎临床路径
- (完整版)市政工程施工工期定额(定稿).docx
- 商业发票INVOICE模板
- 2006年工资标准及套改对应表(共7页)
- 超声波焊接作业指导书(共8页)
- 《你的生命有什么可能》PPT
- 双梁桥式起重机设计
评论
0/150
提交评论