2023年福建省厦门市外国语学校高一数学第二学期期末监测试题含解析_第1页
2023年福建省厦门市外国语学校高一数学第二学期期末监测试题含解析_第2页
2023年福建省厦门市外国语学校高一数学第二学期期末监测试题含解析_第3页
2023年福建省厦门市外国语学校高一数学第二学期期末监测试题含解析_第4页
2023年福建省厦门市外国语学校高一数学第二学期期末监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知变量x与y负相关,且由观测数据算得样本平均数=1.5,=5,则由该观测数据算得的线性回归方程可能是()A. B.C. D.2.某校统计了1000名学生的数学期末考试成绩,已知这1000名学生的成绩均在50分到150分之间,其频率分布直方图如图所示,则这1000名学生中成绩在130分以上的人数为()A.10 B.20 C.40 D.603.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是()A. B.C. D.4.在等差数列{an}中,已知a1=2A.50 B.52 C.54 D.565.如图是一三棱锥的三视图,则此三棱锥内切球的体积为()A. B. C. D.6.阅读下面的程序框图,运行相应的程序,若输入的值为24,则输出的值为()A.0 B.1 C.2 D.37.已知向量满足:,,,则()A. B. C. D.8.已知基本单位向量,,则的值为()A.1 B.5 C.7 D.259.若函数()有两个不同的零点,则实数m的取值范围是()A. B. C. D.10.如图所示,已知以正方体所有面的中心为顶点的多面体的体积为,则该正方体的外接球的表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设ω为正实数.若存在a、b(π≤a<b≤2π),使得12.如图是一个三角形数表,记,,…,分别表示第行从左向右数的第1个数,第2个数,…,第个数,则当,时,______.13.已知,且,则________.14.数列满足:,,的前项和记为,若,则实数的取值范围是________15.如图,在正方体中,、分别是、的中点,则异面直线与所成角的大小是______.16.终边在轴上的角的集合是_____________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在四棱锥中,,.(1)若点为的中点,求证:平面;(2)当平面平面时,求二面角的余弦值.18.某种笔记本的单价是5元,买个笔记本需要y元,试用函数的三种表示法表示函数.19.已知圆过点.(1)点,直线经过点A且平行于直线,求直线的方程;(2)若圆心的纵坐标为2,求圆的方程.20.设数列的前项和为,已知.(1)求,的值;(2)求证:数列是等比数列.21.若数列满足:对于,都有(为常数),则称数列是公差为的“隔项等差”数列.(Ⅰ)若,是公差为8的“隔项等差”数列,求的前项之和;(Ⅱ)设数列满足:,对于,都有.①求证:数列为“隔项等差”数列,并求其通项公式;②设数列的前项和为,试研究:是否存在实数,使得成等比数列()?若存在,请求出的值;若不存在,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

先由变量负相关,可排除D;再由回归直线过样本中心,即可得出结果.【详解】因为变量x与y负相关,所以排除D;又回归直线过样本中心,A选项,过点,所以A正确;B选项,不过点,所以B不正确;C选项,不过点,所以C不正确;故选A【点睛】本题主要考查线性回归直线,熟记回归直线的意义即可,属于常考题型.2、C【解析】

由频率分布直方图求出这1000名学生中成绩在130分以上的频率,由此能求出这1000名学生中成绩在130分以上的人数.【详解】由频率分布直方图得这1000名学生中成绩在130分以上的频率为:,则这1000名学生中成绩在130分以上的人数为人.故选:.【点睛】本题考查频数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.3、B【解析】

设阴影部分正方形的边长为,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率.【详解】如图所示,设阴影部分正方形的边长为,则七巧板所在正方形的边长为,由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率,故选:B.【点睛】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题.4、C【解析】

利用等差数列通项公式求得基本量d,根据等差数列性质可得a4【详解】设等差数列an公差为则a2+∴本题正确选项:C【点睛】本题考查等差数列基本量的求解问题,关键是能够根据等差数列通项公式构造方程求得公差,属于基础题.5、D【解析】把此三棱锥嵌入长宽高分别为:的长方体中三棱锥即为所求的三棱锥其中,,,则,故可求得三棱锥各面面积分别为:,,,故表面积为三棱锥体积设内切球半径为,则故三棱锥内切球体积故选6、C【解析】

根据给定的程序框图,逐次循环计算,即可求解,得到答案.【详解】由题意,第一循环:,能被3整除,不成立,第二循环:,不能被3整除,不成立,第三循环:,不能被3整除,成立,终止循环,输出,故选C.【点睛】本题主要考查了程序框图的识别与应用,其中解答中根据条件进行模拟循环计算是解答的关键,着重考查了运算与求解能力,属于基础题.7、D【解析】

首先根据题中条件求出与的数量积,然后求解即可.【详解】由题有,即,,所以.故选:D.【点睛】本题主要考查了向量的模,属于基础题.8、B【解析】

计算出向量的坐标,再利用向量的求模公式计算出的值.【详解】由题意可得,因此,,故选B.【点睛】本题考查向量模的计算,解题的关键就是求出向量的坐标,并利用坐标求出向量的模,考查运算求解能力,属于基础题.9、A【解析】

函数()有两个不同的零点等价于函数在均有一个解,再解不等式即可.【详解】解:因为,由函数()有两个不同的零点,则函数在均有一个解,则,解得:,故选:A.【点睛】本题考查了分段函数的零点问题,重点考查了分式不等式的解法,属中等题.10、A【解析】

设正方体的棱长为,则中间四棱锥的底面边长为,由已知多面体的体积求解,得到正方体外接球的半径,则外接球的表面积可求.【详解】设正方体的棱长为,则中间四棱锥的底面边长为,多面体的体积为,即.正方体的对角线长为.则正方体的外接球的半径为.表面积为.故选:.【点睛】本题考查几何体的体积的求法,考查空间想象能力以及计算能力,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、ω∈[【解析】

由sinωa+sinωb=2⇒sinωa=sinωb=1.而[ωa,ωb]⊆[ωπ,2ωπ]【详解】由sinωa+而[ωa,ωb]⊆[ωπ,2ωπ],故已知条件等价于:存在整数ωπ当ω≥4时,区间[ωπ,2ωπ]的长度不小于4π当0<ω<4时,注意到,[ωπ故只要考虑如下几种情形:(1)ωπ≤π2<(2)ωπ≤5(3)ωπ≤9综上,并注意到ω≥4也满足条件,知ω∈[9故答案为:ω∈[【点睛】本题主要考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.12、【解析】

由图表,利用归纳法,得出,再利用叠加法,即可求解数列的通项公式.【详解】由图表,可得,,,,,可归纳为,利用叠加法可得:,故答案为.【点睛】本题主要考查了归纳推理的应用,以及数列的叠加法的应用,其中解答中根据图表,利用归纳法,求得数列的递推关系式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.13、或【解析】

利用正切函数的单调性及周期性,可知在区间与区间内各有一值,从而求出。【详解】因为函数的周期为,而且在内单调增,所以有两个解,一个在,一个在,由反正切函数的定义有,或。【点睛】本题主要考查正切函数的性质及反正切函数的定义的应用。14、【解析】

因为数列有极限,故考虑的情况.又数列分两组,故分组求和求极限即可.【详解】因为,故,且,故,又,即.综上有.故答案为:【点睛】本题主要考查了数列求和的极限,需要根据题意分组求得等比数列的极限,再利用不等式找出参数的关系,属于中等题型.15、【解析】

将所求两条异面直线平移到一起,解三角形求得异面直线所成的角.【详解】连接,根据三角形中位线得到,所以是异面直线与所成角.在三角形中,,所以三角形是等边三角形,故.故填:.【点睛】本小题主要考查异面直线所成的角的求法,考查空间想象能力,属于基础题.16、【解析】

由于终边在y轴的非负半轴上的角的集合为而终边在y轴的非正半轴上的角的集合为,终边在轴上的角的集合是,所以,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】

(I)结合平面与平面平行判定,得到平面BEM平行平面PAD,结合平面与平面性质,证明结论.(II)建立空间坐标系,分别计算平面PCD和平面PDB的法向量,结合向量数量积公式,计算余弦值,即可.【详解】(Ⅰ)取的中点为,连结,.由已知得,为等边三角形,.∵,,∴,∴,∴.又∵平面,平面,∴∥平面.∵为的中点,为的中点,∴∥.又∵平面,平面,∴∥平面.∵,∴平面∥平面.∵平面,∴∥平面.(Ⅱ)连结,交于点,连结,由对称性知,为的中点,且,.∵平面平面,,∴平面,,.以为坐标原点,的方向为轴正方向,建立空间直角坐标系.则(0,,0),(3,0,0),(0,0,1).易知平面的一个法向量为.设平面的法向量为,则,,∴,∵,,∴.令,得,∴,∴.设二面角的大小为,则.【点睛】本道题考查了平面与平面平行判定和性质,考查了空间向量数量积公式,关键建立空间坐标系,难度偏难.18、见解析.【解析】

根据定义域,分别利用解析法,列表法,图像法表示即可.【详解】解:这个函数的定义域是数集.用解析法可将函数表示为,.用列表法可将函数表示为笔记本数12345钱数510152025用图象法可将函数表示为:【点睛】本题考查函数的表示方法,注意函数的定义域,是基础题.19、(1);(2).【解析】

(1)求出直线的斜率,由直线与直线平行,可知这两条直线的斜率相等,再利用点斜式可得出直线的方程;(2)由题意得出点在线段的中垂线上,可求出点的坐标,再利用两点间的距离公式求出圆的半径,于此可写出圆的标准方程.【详解】(1)直线过点,斜率为,所以直线的方程为,即;(2)由圆的对称性可知,必在线段的中垂线上,圆心的横坐标为:,即圆心为:,圆的半径:,圆的标准方程为:.【点睛】本题考查直线的方程,考查圆的方程的求解,在求解直线与圆的方程中,充分分析直线与圆的几何要素,能起到简化计算的作用,考查计算能力,属于中等题.20、(1),(2)见解析【解析】

(1)依次令,,解出即可。(2)由知当时,两式相减,化简即可得证。【详解】解(1)∵,∴当时,;当时,,∴;当时,,∴.(2)证明:∵,①∴当时,,②①-②得,∴,即.∴.∵.∴,∴.即是以4为首项,2为公比的等比数列.【点睛】本题考查公式的应用,属于基础题。21、(Ⅰ)(Ⅱ)①当为偶数时,,当为奇数时,;②【解析】

试题分析:(Ⅰ)由新定义知:前项之和为两等差数列之和,一个是首项为3,公差为8的等差数列前8项和,另一个是首项为17,公差为8的等差

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论