2023届云南省昆明市数学高一第二学期期末考试试题含解析_第1页
2023届云南省昆明市数学高一第二学期期末考试试题含解析_第2页
2023届云南省昆明市数学高一第二学期期末考试试题含解析_第3页
2023届云南省昆明市数学高一第二学期期末考试试题含解析_第4页
2023届云南省昆明市数学高一第二学期期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在矩形中,,,点满足,记,,,则的大小关系为()A. B.C. D.2.已知等比数列an的公比为q,且q<1,数列bn满足bn=anA.-23 B.23 C.3.若,,则()A. B. C. D.4.已知平面向量与的夹角为,且,则()A. B. C. D.5.已知点O是边长为2的正三角形ABC的中心,则()A. B. C. D.6.函数在上零点的个数为()A.2 B.3 C.4 D.57.一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是()A.127 B.29 C.48.已知圆,圆,则圆与圆的位置关系是()A.相离 B.相交 C.外切 D.内切9.函数f(x)=x,g(x)=x2-x+2,若存在x1,x2A.12 B.22 C.23 D.3210.下列各角中与角终边相同的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.等差数列前项和为,已知,,则_____.12.一个社会调查机构就某地居民收入调查了10000人,并根据所得数据画出了如图所示的频率分布直方图,现要从这10000人中再用分层抽样的方法抽出100人作进一步调查,则月收入在(元)内的应抽出___人.13.已知数列是等差数列,,那么使其前项和最小的是______.14.若直线与直线互相平行,那么a的值等于_____.15.已知:,则的取值范围是__________.16.如图,矩形中,,,是的中点,将沿折起,使折起后平面平面,则异面直线和所成的角的余弦值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)把表示为的形式,并写出函数的最小正周期、值域;(2)求函数的单调递增区间:(3)定义:对于任意实数、,设,(常数),若对于任意,总存在,使得恒成立,求实数的取值范围.18.已知,,与的夹角为,,,当实数为何值时,(1);(2).19.的内角,,的对边分别为,,,已知.(1)求角;(2)若,求面积的最大值.20.已知向量,,.(1)求函数的解析式及在区间上的值域;(2)求满足不等式的x的集合.21.已知等差数列满足,,其前项和为.(1)求的通项公式及;(2)令,求数列的前项和,并求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

可建立合适坐标系,表示出a,b,c的大小,运用作差法比较大小.【详解】以为圆心,以所在直线为轴、轴建立坐标系,则,,,设,则,,,,,,,,故选C.【点睛】本题主要考查学生的建模能力,意在考查学生的理解能力及分析能力,难度中等.2、A【解析】

由题可知数列{an}【详解】因为数列{bn}有连续四项在集合{-28,-19,-13,7,17,23}中,bn=an-1,所以数列{an}有连续四项在集合{-27,-18,-12,8,18,24}中,所以数列{an}的连续四项不同号,即【点睛】本题主要考查等比数列的综合应用,意在考查学生的分析能力,逻辑推理能力,分类讨论能力,难度较大.3、D【解析】

由于,,,,利用“平方关系”可得,,变形即可得出.【详解】∵,,∴,∴.∵,∴,∵,∴.∴.故选D.【点睛】本题考查了两角和的余弦公式、三角函数同角基本关系式、拆分角等基础知识与基本技能方法,属于中档题.4、A【解析】

根据平面向量数量积的运算法则,将平方运算可得结果.【详解】∵,∴,∴cos=4,∴,故选A.【点睛】本题考查了利用平面向量的数量积求模的应用问题,考查了数量积与模之间的转化,是基础题目.5、B【解析】

直接由正三角形的性质求出两向量的模和夹角,由数量积定义计算.【详解】∵点O是边长为2的正三角形ABC的中心,∴,,∴.故选:B.【点睛】本题考查平面向量的数量积,掌握数量积的定义是解题关键.6、D【解析】

在同一直角坐标系下,分别作出与的图象,结合函数图象即可求解.【详解】解:由题意知:函数在上零点个数,等价于与的图象在同一直角坐标系下交点的个数,作图如下:由图可知:函数在上有个零点.故选:D【点睛】本题考查函数的零点的知识,考查数形结合思想,属于中档题.7、C【解析】

先求出基本事件总数n=27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,由此能求出在27个小正方体中,任取一个其两面涂有油漆的概率.【详解】∵一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,∴基本事件总数n=27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,则在27个小正方体中,任取一个其两面涂有油漆的概率P=1227=故选:C【点睛】本题考查概率的求法,考查古典概型、正方体性质等基础知识,考查推理论证能力、空间想象能力,考查函数与方程思想,是基础题.8、C【解析】,,,,,即两圆外切,故选.点睛:判断圆与圆的位置关系的常见方法(1)几何法:利用圆心距与两半径和与差的关系.(2)切线法:根据公切线条数确定.(3)数形结合法:直接根据图形确定9、B【解析】

由题得g(x构造h(x)=g(x)-f(x)=x2-2x+2∈【详解】由fx1+f令h(x)=g(x)-f(x)=xhxn=hx1N的最大值为22.故选:B.【点睛】本题考查函数的最值的求法,注意运用转化思想,以及二次函数在闭区间上的最值求法,考查运算能力,属于中档题.10、D【解析】

写出与终边相同的角,取值得答案.【详解】解:与终边相同的角为,,取,得,与终边相同.故选:D.【点睛】本题考查终边相同角的表示法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

首先根据、即可求出和,从而求出。【详解】,①,②①②得,,即,∴,即,∴,故答案为:1.【点睛】本题主要考查了解方程,以及等差数列的性质和前项和。其中等差数列的性质:若则比较常考,需理解掌握。12、25【解析】由直方图可得[2500,3000)(元)月收入段共有10000×0.0005×500=2500人按分层抽样应抽出人.故答案为25.13、5【解析】

根据等差数列的前n项和公式,判断开口方向,计算出对称轴,即可得出答案。【详解】因为等差数列前项和为关于的二次函数,又因为,所以其对称轴为,而,所以开口向上,因此当时最小.【点睛】本题考查等差数列前n项和公式的性质,属于基础题。14、;【解析】由题意得,验证满足条件,所以15、【解析】

由已知条件将两个角的三角函数转化为一个角的三角函数,再运用三角函数的值域求解.【详解】由已知得,所以,又因为,所以,解得,所以,故填.【点睛】本题考查三角函数的值域,属于基础题.16、【解析】

取中点为,中点为,连接,则异面直线和所成角为.在中,利用边长关系得到余弦值.【详解】由题意,取中点,连接,则,可得直线和所成角的平面角为,(如图)过作垂直于,平面⊥平面,,平面,,且,结合平面图形可得:,,,又=,∴=,∴在中,=,∴△DFC是直角三角形且,可得.【点睛】本题考查了异面直线的夹角,意在考查学生的计算能力和空间想象能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)(3)【解析】

(1)结合二倍角正弦公式和辅助角公式即可化简;(2)结合(1)中所求表达式,正弦型函数单调增区间的通式即可求解;(3)根据题意可得,,求出的值域,列出关于的不等式组,即可求解【详解】(1),,值域为;(2)令,解得,所以函数的单调递增区间为,;(3)若对于任意,总存在,使得恒成立,则,,当,即时,,当,即时,,故,所以,解得,所以实数的取值范围是【点睛】本题考查三角函数的化简和三角函数的性质应用,函数恒成立问题的转化,属于中档题18、(1);(2).【解析】试题分析:(1)利用平面向量共线的判定条件进行求解;(2),利用平面向量的数量积为0进行求解.试题解析:(1)若,则存在实数,使,即,则,解得得;(2)若,则,解得.考点:1.平面向量共线的判定;2.平面向量垂直的判定.19、(1);(2).【解析】

(1)由边角互化整理后,即可求得角C;(2)由余弦定理,结合均值不等式,求解的最大值,代入面积即可.【详解】(1)由正弦定理得,,,,因为,所以,所以,即,所以.(2)由余弦定理可得:即,所以,当且仅当时,取得最大值为.【点睛】本题考查解三角形中的边角互化,以及利用余弦定理及均值不等式求三角形面积的最值问题,属综合中档题.20、(1)值域为.(2)【解析】

(1)由向量,,利用数量积运算得到;由,得到,利用整体思想转化为正弦函数求值域.(2)不等式,转化为,利用整体思想,转化为三角不等式,利用单位圆或正弦函数的图象求解.【详解】(1)因为,,所以.因为,所以,所以,所以,所以在区间上的值域为.(2)由,得,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论