2023届天津市东丽区民族中学高一数学第二学期期末复习检测试题含解析_第1页
2023届天津市东丽区民族中学高一数学第二学期期末复习检测试题含解析_第2页
2023届天津市东丽区民族中学高一数学第二学期期末复习检测试题含解析_第3页
2023届天津市东丽区民族中学高一数学第二学期期末复习检测试题含解析_第4页
2023届天津市东丽区民族中学高一数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设数列是等差数列,是其前项和,且,,则下列结论中错误的是()A. B. C. D.与均为的最大值2.高铁、扫码支付、共享单车、网购被称为中国的“新四大发明”,为评估共享单车的使用情况,选了座城市作实验基地,这座城市共享单车的使用量(单位:人次/天)分别为,,…,,下面给出的指标中可以用来评估共享单车使用量的稳定程度的是()A.,,…,的标准差 B.,,…,的平均数C.,,…,的最大值 D.,,…,的中位数3.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,84.某班有男生30人,女生20人,按分层抽样方法从班级中选出5人负责校园开放日的接待工作.现从这5人中随机选取2人,至少有1名男生的概率是()A. B. C. D.5.在中,,,则的最大值为A. B. C. D.6.把直线绕原点逆时针转动,使它与圆相切,则直线转动的最小正角度().A. B. C. D.7.如右图所示,直线的斜率分别为则A. B.C. D.8.在△ABC中,内角A、B、C所对的边分别为a、b、c,若,则()A. B. C. D.9.圆锥的母线长为,侧面展开图为一个半圆,则该圆锥表面积为()A. B. C. D.10.在中,角A,B,C的对边分别为a,b,c,若,则角=()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在三棱锥P-ABC中,平面PAB⊥平面ABC,ΔABC是边长为23的等边三角形,其中PA=PB=12.数列中,,,,则的前2018项和为______.13.光线从点射向y轴,经过y轴反射后过点,则反射光线所在的直线方程是________.14.已知则sin2x的值为________.15.不等式的解集是______.16.已知是边长为的等边三角形,为边上(含端点)的动点,则的取值范围是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若函数的周期,且满足,求及的递增区间;(2)若,在上的最小值为,求的最小值.18.设一元二次不等式的解集为.(Ⅰ)当时,求;(Ⅱ)当时,求的取值范围.19.已知,且(1)求的值;(2)求的值.20.已知直线,,是三条不同的直线,其中.(1)求证:直线恒过定点,并求出该点的坐标;(2)若以,的交点为圆心,为半径的圆与直线相交于两点,求的最小值.21.已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若在区间上的最大值为,求的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据等差数列的性质,结合,,分析出错误结论.【详解】由于,,所以,,,所以,与均为的最大值.而,所以,所以C选项结论错误.故选:C.【点睛】本小题主要考查等差数列的性质,考查分析与推理能力,属于基础题.2、A【解析】

利用方差或标准差表示一组数据的稳定程度可得出选项.【详解】表示一组数据的稳定程度是方差或标准差,标准差越小,数据越稳定故选:A【点睛】本题考查了用样本估计总体,需掌握住数据的稳定程度是用方差或标准差估计的,属于基础题.3、C【解析】试题分析:由题意得,,选C.考点:茎叶图4、D【解析】

由题意,男生30人,女生20人,按照分层抽样方法从中抽取5人,则男生为人,女生为,从这5人中随机选取2人,共有种,全是女生的只有1种,所以至少有1名女生的概率为,故选D.5、A【解析】

利用正弦定理得出的外接圆直径,并利用正弦定理化边为角,利用三角形内角和关系以及两角差正弦公式、配角公式化简,最后利用正弦函数性质可得出答案.【详解】中,,,则,,其中由于,所以,所以最大值为.故选A.【点睛】本题考查正弦定理以及两角差正弦公式、配角公式,考查基本分析计算能力,属于中等题.6、B【解析】

根据直线过原点且与圆相切,求出直线的斜率,再数形结合计算最小旋转角。【详解】解析:由题意,设切线为,∴.∴或.∴时转动最小.∴最小正角为.故选B.【点睛】本题考查直线与圆的位置关系,属于基础题。7、C【解析】试题分析:由图可知,,所以,故选C.考点:直线的斜率.8、A【解析】

由正弦定理可得,再结合求解即可.【详解】解:由,又,则,由,则,故选:A.【点睛】本题考查了正弦定理,属基础题.9、B【解析】

由圆锥展开图为半径为的半圆,得出其弧长等于圆锥的底面圆周长,可得出圆锥底面圆的半径,然后利用圆锥的表面积公式可计算出圆锥的表面积.【详解】一个圆锥的母线长为,它的侧面展开图为半圆,半圆的弧长为,即圆锥的底面周长为,设圆锥的底面半径是,则得到,解得,这个圆锥的底面半径是,圆锥的表面积为.故选:B.【点睛】本题考查圆锥表面积的计算,计算时要结合已知条件列等式计算出圆锥的相关几何量,考查运算求解能力,属于中等题.10、A【解析】

由正弦定理可解得,利用大边对大角可得范围,从而解得A的值.【详解】,由正弦定理可得:,,由大边对大角可得:,解得:.故选A.【点睛】本题主要考查了正弦定理,大边对大角,正弦函数的图象和性质等知识的应用,解题时要注意分析角的范围.二、填空题:本大题共6小题,每小题5分,共30分。11、65π【解析】

本题首先可以通过题意画出图像,然后通过三棱锥的图像性质以及三棱锥的外接球的相关性质来确定圆心的位置,最后根据各边所满足的几何关系列出算式,即可得出结果。【详解】如图所示,作AB中点D,连接PD、CD,在CD上作三角形ABC的中心E,过点E作平面ABC的垂线,在垂线上取一点O,使得PO=OC。因为三棱锥底面是一个边长为23的等边三角形,E所以三棱锥的外接球的球心在过点E的平面ABC的垂线上,因为PO=OC,P、C两点在三棱锥的外接球的球面上,所以O点即为球心,因为平面PAB⊥平面ABC,PA=PB,D为AB中点,所以PD⊥平面ABCCD=CA2-ADPD=P设球的半径为r,则有PO=OC=r,OE=r(PD-OE)2+DE2=P故表面积为S=4πr【点睛】本题考查三棱锥的相关性质,主要考查三棱锥的外接球的相关性质,考查如何通过三棱锥的几何特征来确定三棱锥的外接球与半径,考查推理能力,考查化归与转化思想,是难题。12、2【解析】

直接利用递推关系式和数列的周期求出结果即可.【详解】数列{an}中,a1=1,a2=2,an+2=an+1﹣an,则:a2=a2﹣a1=1,a4=a2﹣a2=﹣1,a5=a4﹣a2=﹣2,a1=a5﹣a4=﹣1,a7=a1﹣a5=1,…所以:数列的周期为1.a1+a2+a2+a4+a5+a1=0,数列{an}的前2018项和为:(a1+a2+a2+a4+a5+a1)+…+(a2011+a2012+a2012+a2014+a2015+a2011)+a2017+a2018,=0+0+…+0+(a1+a2)=2.故答案为:2【点睛】本题考查的知识要点:数列的递推关系式的应用,数列的周期的应用,主要考查学生的运算能力和转化能力,属于基础题.13、(或写成)【解析】

光线从点射向y轴,即反射光线反向延长线经过关于y轴的对称点,则反射光线通过和两个点,设直线方程求解即可。【详解】由题意可知,所求直线方程经过点关于y轴的对称点为,则所求直线方程为,即.【点睛】此题的关键点在于物理学上光线的反射光线和入射光线关于镜面对称,属于基础题目。14、【解析】

利用二倍角的余弦函数公式求出的值,再利用诱导公式化简,将的值代入计算即可求出值.【详解】解:∵,,则sin2x==,故答案为.【点睛】此题考查了二倍角的余弦函数公式,以及诱导公式的作用,熟练掌握公式是解本题的关键.15、【解析】

由题可得,分式化乘积得,进而求得解集.【详解】由移项通分可得,即,解得,故解集为【点睛】本题考查分式不等式的解法,属于基础题.16、【解析】

取的中点为坐标原点,、所在直线分别为轴、轴建立平面直角坐标系,设点的坐标为,其中,利用数量积的坐标运算将转化为有关的一次函数的值域问题,可得出的取值范围.【详解】如下图所示:取的中点为坐标原点,、所在直线分别为轴、轴建立平面直角坐标系,则点、、,设点,其中,,,,因此,的取值范围是,故答案为.【点睛】本题考查平面向量数量积的取值范围,可以利用基底向量法以及坐标法求解,在建系时应充分利用对称性来建系,另外就是注意将动点所在的直线变为坐标轴,可简化运算,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)2.【解析】

(1)由函数的性质知,关于直线对称,又函数的周期,两个条件两个未知数,列两个方程,所以可以求出,进而得到的解析式,求出的递增区间;(2)求出的所有解,再解不等式,即可求出的最小值.【详解】(1),由知,∴对称轴∴,又,,由,得,函数递增区间为;(2)由于,在上的最小值为,所以,即,所以,所以.【点睛】本题主要考查三角函数解析式、单调区间以及最值的求法,特别注意用代入法求单调区间时,要考虑复合函数的单调性,以免求错.18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)将代入得到关于的不等式,结合一元二次方程解一元二次不等式可求得集合;(Ⅱ)解集为即不等式恒成立,求解时结合与之对应的二次函数考虑可得到需满足的条件解不等式求的取值范围.【详解】(Ⅰ)当时,原不等式为:解方程得.(Ⅱ)由,即不等式的解集为R,则.19、(1);(2).【解析】

(1)由条件先求得然后再用二倍角公式求;(2)利用角的变换求出,在根据的范围确定的值.【详解】(1)因为,所以,所以,所以;(2)因为,所以因为,所以,由(1)得,所以=,因为,所以.【点睛】根据已知条件求角的步骤:(1)求角的某一个三角函数值;(2)确定角的范围;(3)根据角的范围写出所求的角.在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是,选正、余弦皆可;若角的范围是,选余弦较好;若角的范围为,选正弦较好.20、(1)证明见解析;定点坐标;(2)【解析】

(1)将整理为:,可得方程组,从而求得定点;(2)直线方程联立求得圆心坐标,将问题转化为求圆心到直线距离的最大值的问题,根据圆的性质可知最大值为,从而求得最小值.【详解】(1)证明:,可化为:令,解得:,直线恒过定点(2)将,联立可得交点坐标设到直线的距离为,则则求的最小值,即求的最大值由(1)知,直线恒过点,则最大时,,即【点睛】本题考查直线过定点问题的求解、直线被圆截得弦长的最值的求解,关键是能够根据圆的性质确定求解弦长的最小值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论