2023届上海市上师大附中高一数学第二学期期末复习检测试题含解析_第1页
2023届上海市上师大附中高一数学第二学期期末复习检测试题含解析_第2页
2023届上海市上师大附中高一数学第二学期期末复习检测试题含解析_第3页
2023届上海市上师大附中高一数学第二学期期末复习检测试题含解析_第4页
2023届上海市上师大附中高一数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合A={x|x≥–3},B={x|–3<x<1},则A∪B=()A.{x|x>–3} B.{x|x<1}C.{x|x≥–3} D.{x|–3≤x<1}2.的内角的对边分别为,边上的中线长为,则面积的最大值为()A. B. C. D.3.中,,则()A. B. C.或 D.4.在正方体中,为棱的中点,则异面直线与所成角的余弦值为()A. B. C. D.5.已知,则()A. B. C. D.6.在中,角,,所对的边分别为,,,若,且,则的面积的最大值为()A. B. C. D.7.过曲线的左焦点且和双曲线实轴垂直的直线与双曲线交于点A,B,若在双曲线的虚轴所在的直线上存在—点C,使得,则双曲线离心率e的最小值为()A. B. C. D.8.《九章算术》中有这样一个问题:今有女子善织,日增等尺,七日织二十八尺,第二日、第五日、第八日所织之和为十五尺,问若聘该女子做工半月(15日),一共能织布几尺()A.75 B.85 C.105 D.1209.已知直线经过两点,则的斜率为()A. B. C. D.10.若角α的终边经过点P(-1,1A.sinα=1C.cosα=2二、填空题:本大题共6小题,每小题5分,共30分。11.______.12.若正四棱锥的所有棱长都相等,则该棱锥的侧棱与底面所成的角的大小为____.13.设变量满足条件,则的最小值为___________14.已知为第二象限角,且,则_________.15.把数列的所有数按照从大到小的原则写成如下数表:第行有个数,第行的第个数(从左数起)记为,则________.16.函数的图象过定点______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在梯形ABCD中,,,,.(1)求AC的长;(2)求梯形ABCD的高.18.某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)万件与年促销费用万元,满足(为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2020年该产品的利润(万元)表示为年促销费用(万元)的函数;(2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?19.已知三棱锥的体积为1.在侧棱上取一点,使,然后在上取一点,使,继续在上取一点,使,……按上述步骤,依次得到点,记三棱锥的体积依次构成数列,数列的前项和.(1)求数列和的通项公式;(2)记,为数列的前项和,若不等式对一切恒成立,求实数的取值范围.20.某企业2015年的纯利润为500万元,因为企业的设备老化等原因,企业的生产能力将逐年下降.若不进行技术改造,预测从2015年开始,此后每年比上一年纯利润减少20万元.如果进行技术改造,2016年初该企业需一次性投入资金600万元,在未扣除技术改造资金的情况下,预计2016年的利润为750万元,此后每年的利润比前一年利润的一半还多250万元.(1)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的年纯利润为万元;进行技术改造后,在未扣除技术改造资金的情况下的年利润为万元,求和;(2)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的累计纯利润为万元,进行技术改造后的累计纯利润为万元,求和;(3)依上述预测,从2016年起该企业至少经过多少年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润?21.已知函数,为实数.(1)若对任意,都有成立,求实数的值;(2)若,求函数的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据并集的运算律可计算出集合A∪B.【详解】∵A=xx≥-3,B=x故选:C.【点睛】本题考查集合的并集运算,解题的关键就是并集运算律的应用,考查计算能力,属于基础题.2、D【解析】

作出图形,通过和余弦定理可计算出,于是利用均值不等式即可得到答案.【详解】根据题意可知,而,同理,而,于是,即,又因为,代入解得.过D作DE垂直于AB于点E,因此E为中点,故,而,故面积最大值为4,答案为D.【点睛】本题主要考查解三角形与基本不等式的相关综合,表示出三角形面积及使用均值不等式是解决本题的关键,意在考查学生的转化能力,计算能力,难度较大.3、A【解析】

根据正弦定理,可得,然后根据大边对大角,可得结果..【详解】由,所以由,所以故,所以故选:A【点睛】本题考查正弦定理的应用,属基础题.4、D【解析】

利用,得出异面直线与所成的角为,然后在中利用锐角三角函数求出.【详解】如下图所示,设正方体的棱长为,四边形为正方形,所以,,所以,异面直线与所成的角为,在正方体中,平面,平面,,,,,在中,,,因此,异面直线与所成角的余弦值为,故选D.【点睛】本题考查异面直线所成角的计算,一般利用平移直线,选择合适的三角形,利用锐角三角函数或余弦定理求解,考查推理能力与计算能力,属于中等题.5、C【解析】

利用诱导公式和同角三角函数的商数关系,得,再利用化弦为切的方法,即可求得答案.【详解】由已知则故选C.【点睛】本题考查利用三角函数的诱导公式、同角三角函数的基本关系化简求值,属于三角函数求值问题中的“给值求值”问题,解题的关键是正确掌握诱导公式中符号与函数名称的变换规律和化弦为切方法.6、A【解析】

由以及,结合二倍角的正切公式,可得,根据三角形的内角的范围可得,由余弦定理以及基本不等式可得,再根据面积公式可得答案.【详解】因为,且,所以,所以,则.由于为定值,由余弦定理得,即.根据基本不等式得,即,当且仅当时,等号成立.所以.故选:A【点睛】本题考查了二倍角的正切公式,考查了余弦定理,考查了基本不等式,考查了三角形的面积公式,属于中档题.7、C【解析】

设双曲线的方程为:,(a>0,b>0),依题意知当点C在坐标原点时,∠ACB最大,∠AOF1≥45°,利用tan∠AOF1,即可求得双曲线离心率e的取值范围.求出最小值.【详解】设双曲线的方程为:,(a>0,b>0),∵双曲线关于x轴对称,且直线AB⊥x轴,设左焦点F1(﹣c,0),则A(﹣c,),B(﹣c,),∵△ABC为直角三角形,依题意知,当点C在坐标原点时,∠ACB最大,∴∠AOF1≥45°,∴tan∠AOF11,整理得:()21≥0,即e2﹣e﹣1≥0,解得:e.即双曲线离心率e的最小值为:.故选:C【点睛】本题考查双曲线的简单性质,分析得到当点C在坐标原点时,∠ACB最大是关键,得到∠AOF1≥45°是突破口,属于中档题.8、D【解析】设第一天织尺,第二天起每天比前一天多织尺,由已知得,,故选D.【方法点睛】本题主要考查等差数列的通项公式、等差数列的前项和公式,属于中档题.等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,另外,解等差数列问题要注意应用等差数列的性质()与前项和的关系.9、A【解析】

直接代入两点的斜率公式,计算即可得出答案。【详解】故选A【点睛】本题考查两点的斜率公式,属于基础题。10、B【解析】

利用三角函数的定义可得α的三个三角函数值后可得正确的选项.【详解】因为角α的终边经过点P-1,1,故r=OP=所以sinα=【点睛】本题考查三角函数的定义,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

,,故答案为.考点:三角函数诱导公式、切割化弦思想.12、【解析】

先作出线面角,再利用三角函数求解即可.【详解】如图,设正四棱锥的棱长为1,作在底面的射影,则为与底面所成角,为正方形的中心,,,,故答案为.【点睛】本题考查线面角,考查学生的计算能力,作出线面角是关键.属于基础题.13、-1【解析】

根据线性规划的基本方法求解即可.【详解】画出可行域有:因为.根据当直线纵截距最大时,取得最小值.由图易得在处取得最小值.故答案为:【点睛】本题主要考查了线性规划的基本运用,属于基础题.14、.【解析】

先由求出的值,再利用同角三角函数的基本关系式求出、即可.【详解】因为为第二象限角,且,所以,解得,再由及为第二象限角可得、,此时.故答案为:.【点睛】本题主要考查两角差的正切公式及同角三角函数的基本关系式的应用,属常规考题.15、【解析】

第行有个数知每行数的个数成等比数列,要求,先要求出,就必须求出前行一共出现了多少个数,根据等比数列的求和公式可求,而由可知,每一行数的分母成等差数列,可求出,令,即可求出.【详解】由第行有个数,可知每一行数的个数成等比数列,首项是,公比是,所以,前行共有个数,所以,第行第一个数为,,因此,.故答案为:.【点睛】本题考查数列的性质和应用,解题时要注意数阵的应用,同时要找出数阵的规律,考查推理能力,属于中等题.16、【解析】

令真数为,求出的值,代入函数解析式可得出定点坐标.【详解】令,得,当时,.因此,函数的图象过定点.故答案为:.【点睛】本题考查对数型函数图象过定点问题,一般利用真数为来求得,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2).【解析】

(1)首先计算,再利用正弦定理计算得到答案.(2)中,由余弦定理得,作高,在直角三角形中利用三角函数得到高的大小.【详解】(1)在中,,.由正弦定理得:,即.(2)在中,由余弦定理得:,整理得,解得.过点D作于E,则DE为梯形ABCD的高.,,.在直角中,.即梯形ABCD的高为.【点睛】本题考查了正弦定理,余弦定理,意在考查学生的计算能力和解决问题的能力.18、(1);(2)厂家2020年的促销费用投入3万元时,厂家的利润最大,为21万元.【解析】

(1)由不搞促销活动,则该产品的年销售量只能是1万件,可求k的值,再求出每件产品销售价格的代数式,则利润(万元)表示为年促销费用(万元)的函数可求.(2)由(1)得,再根据均值不等式可解.注意取等号.【详解】(1)由题意知,当时,所以,每件产品的销售价格为元.所以2020年的利润;(2)由(1)知,,当且仅当,即时取等号,该厂家2020年的促销费用投入3万元时,厂家的利润最大,为21万元.【点睛】考查均值不等式的应用以及给定值求函数的参数及解析式.题目较易,考查的均值不等式,要注意取等号.19、(1).;(2).【解析】

(1)由三棱锥的体积公式可得是等比数列,从而可求得其通项公式,利用可求得,但要注意;(2)用错位相减法求得,化简不等式,分离参数,转化为求函数的最值.【详解】(1)由题意,∴,三棱锥的体积就是三棱锥的体积,它们都以为底面,因此它们的体积比等于它们高的比,即到平面的距离之比,又都在直线上,所以点到平面的距离之比就等于棱长的比,∴,,,∴.,则,时,,也适合.∴.(2)由(1),,,两式相减得:,∴.不等式为,即,设,则,∴当时,递增,当,递减,是中的最大项,.不等式对恒成立,则,∴或.故的范围是.【点睛】本题考查棱锥的体积,考查等比数列的通项公式,考查由求通项,考查错位相减法求和,考查不等式恒成立问题.考查数列的单调性,难度较大.对学生的运算求解能力要求较高.在由求时要注意需另外求解,证明数列单调性时可以有数列的前后项作差或作商比较.20、(1),(2),(3)至少经过4年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润.【解析】

(1)利用等差数列、等比数列的通项公式求和(2)是数列的前项和,是数列的前项和减去600,利用等差数列和等比数列的前项和公式求出即可(3)作差,利用函数的单调性,即可得出结论【详解】(1)由题意得是等差数列,所以由题意得所以所以是首项为250,公比为的等比数列所以所以(2)是数列的前项和所以是数列的前项和减去600,所以(3)易得此函数当时单调递增且时时所以至少经过4年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润.【点睛】本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论