版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
作业练习(复习备用资料)第一章整式考点分析:本章的内容以计算为主,故大部分的分值落在计算题,属于基础题,同学们要必拿哦!占15—20分左右一、整式的有关概念、单项式:数与字母乘积,这样的代数式叫单项式。单独一个数或字母也是单项式。、单项式的系数:单项式中的数字因数。、单项式的次数:单项式中所有的字母的指数和。、多项式:几个单项式的和叫多项式。、多项式的项及次数:组成多项式中的单项式叫多项式的项,多项式中次数最高项的次数叫多项式的次数。、整式:单项式与多项式统称整式。(分母含有字母的代数式不是整式)练习一:(1)指出下列单项式的系数与指数各是多少。3432a(2)xymn
(4)2(3)2r(2)指出下列多项式的次数及项。33ymn25x5二、整式的运算2322xyz3(2)ab724(一)整式的加减法:基本步骤:去括号,合并同类项。(二)整式的乘法、同底数的幂相乘法则:同底数的幂相乘,底数不变,指数相加。数学符号表示:练习二:判断下列各式是否正确。、幂的乘方法则:幂的乘方,底数不变,指数相乘。数学符号表示:mna(a)mn练习三:判断下列各式是否正确。4a)444aa8,,____________________改正:____________2)[(2b3)4]2b3424b__________改正:______________________3)(2x)2n14nx2,改正:________________________________4mm42m24)(a)(a)(a)________________________________改正:1、积的乘方法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。(即等于积中各因式乘方符号表示:n(ab)nnab,(其中n为正整数),(nnnabcn(其中n为正整数)练习四:计算下列各式。14),3)(2),4)()23233231)(2,2)(abxyab2、同底数的幂相除法则:同底数的幂相除,底数不变,指数相减。数学符号表示:特别地:manamana1p为正整数(appa)0aa1)判断正误61)a3a6a32a,改正:__________________________________220,改正:__________________________________450)__________改正:________________________53(m)2m改正:__________________________________(2)计算11)52ma;261m6n3)51514)(m2)2m2,2x)22mnm(xx),6)aan(3)用分数或者小数表示下列各数0134___________;2)3______________;3)1.510_____________
22、单项式乘以单项式法则:单项式乘以单项式,把它们的系数、相同字母的幂分别相乘,其余的字母则连同它的指数不变,作为积的一个因式。练习六:计算下列各式。3(1)(5x22)(2xy),(2)(3ab)(3)(am2)b(a32nb),(23a2bc3)(345c)(13ab2c)、单项式乘以多项式法则:单项式乘以多项式,就是根据分配律用单项式的去乘多项式的每一项,再把所得的积相加。、多项式乘以多项式法则:多项式乘以多项式,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加。1)计算下列各式。(2a)(x2y3c),(2)(x2)(y(xy2)(3)(xy)(2x12y)(2)计算下图中阴影部分的面积、平方差公式法则:两数的各乘以这两数的差,等于这两数的平方差。数学符号表示:(ab)(ab)a22b其中a,b既可以是数,也可以是代数式.3、完全平方公式法则:两数和(或差)的平方,等于这两数的平方和再加上(或减去)这两数积的2倍。数学符号表示:22(aa2ab2b;(a22a2ab2b其中ab既可以是数,也可以是代数式.,1)判断下列式子是否正确,并改正22x2y)(x2y)x2y,改正:(2)(2a25b)24a2,改正:__________12x2142xx改正:(4),还是完全平方公式,a,b只能表示一切有理数.无论是平方差公式改正:__________(2)计算下列式。2(6xy)(6xy)(2)7ab2(3)(3x7y)(3x7y)29,2(5)200121999(9710、整式的除法、单项式除以单项式法则:单项式除以单项式,把它们的系数、相同字母的幂分别相除后,作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。、多项式除以单项式法则:多项式除以单项式,就是多项式的每一项去除单项式,再把所得的商相加。练习九:计算下列各题。4(14a64bc)3((2ac)(2)6(a5b)[13(ab)2](3)(5x23y34xy26x)(6x)(x2x-2-2x第二章平行线与相交线考点分析:本章的内容考题涉及到填空选择,说理题会有一道!但不难,会结合第五章的内容考核;分值10—15分一、知识网络图:相交线余角、补角、对顶角同位角内错角相探索直线平行的条件交同旁内角
线与平行线同位角
平行线探索直线平行的特征内错角同旁内角尺规作图作一条线段等于已知线段;作一个角等于已知角二、知识梳理:(一)角的大小关系:余角、补角、对顶角的定义和性质:1.余角的定义:如果两个角的和是直角,那么称这两个角互为余角.2.补角的定义:如果两个角的和是平角,那么称这两个角互为补角.3.对顶角的定义:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4.互为余角的有关性质:○.①∠1+∠2=90°,则∠、∠2互余.反过来,若∠,∠2互余.则∠1+∠2=90○②同角或等角的余角相等,如果∠l十∠2=90○,则∠2=∠.,∠∠3=905.互为补角的有关性质:○①若∠A∠B=180○则∠A、∠B互补,反过来,若∠、∠B互补,则∠∠=180.○②同角或等角的补角相等.如果∠A+∠C=180,∠∠B=18°,则∠∠.6.对顶角的性质:对顶角相等.5(二)两直线平行的判别和性质:1.同一平面内两条直线的位置关系是:相交或平行.2.“三线八角”的识别:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,.3.平行线的判别:()平行线的定义:在同一平面内,不相交的两条直线是平行线.()如果两条直线都与第三条直线平行,那么.这两条直线互相平行.()两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。()两条直线被第三条直线所截,如果内错角相等.那么这两条直线平行。()两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.备注:其中()这三种方法都是由角的数量关系(相等或互补)来确定直线的位置关系(平行)的,因此能否找到两直线平行的条件,关键是能否正确地找到或识别出同位角,内错角或同旁内角.4.平行线的性质:(1)两直线平行,同位角相等。(2)两直线平行,内错角相等。()两直线平行,同旁内角互补。5.两个几何中最基本的尺规作图:作一条线段等于已知线段和作一个角等于已知角。尺规作线段和角1、在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。2、尺规作图是最基本、最常见的作图方法,通常叫基本作图。做法:例作一条线段等于已知线段例作一个角等于已知角三.基础练习1、观察右图并填空:(1)∠1与是同位角;(2)∠5与是同旁内角;(3)∠1与是内错角;2、当图中各角满足下列条件时你能指出哪两条直线平行?(1)∠1=∠4;(2)∠2=∠4;(3)∠1+∠3=180;6如图:∠°∠2=80°,
∠3=105°则∠4=_______两条直线被第三条直线所截,则()A同位角相等B同旁内角互补C内错角相等D以上都不对如图,若∠∠4,则∥;若AB∥CD,则∠=∠。三、典型例题分析:○,则∠A的补角是________度.
【例】已知:∠A=30○解:150点拨:此题考查了互为补角的性质.【例】如图,直线AB,CD相交于点,OE⊥AB于点,OF平分○∠AOE,∠1=1530)○B1=3.∠∠A2=45.∠○CAOD1D17530.∠与∠互为补角.∠的余角等于′图1解:D互为补角和对顶角之间的综合运用知识.【例】如图2,直线a∥,则∠ACB=________○点拨:过点C作CD平行于a,因为a∥b,所以CD∥.则∠ACD解:78○○○=28,∠DCB=50.所以∠ACB=78.图2【例】如图3,AB∥CD,直线EF分别交A、CD于点、,EG平分○∠BEF,交CD于点,∠1=50求,∠2的度数.○点拨:由AB∥CDBEF=180○-∠○解:65,∠BEG=∠21
因为EG平分∠BEF,所以∠2=∠BEG=
2∠BEF=65°(根据平行线的性质)图3【例若其两次拐弯后仍沿原方向前进,则两次拐弯的角度可能是()○○,第二次向右拐30A.第一次向左拐30○○,第二次向左拐130B.第一次向右拐30○,第二次向右拐130.第一次向右拐50○○○.第二次向左拐130D.第一次向左拐50解:A点拨:本题创设了一个真实的问题。要使经过两次拐弯后.汽车行驶的方向与原来的方向相同.就得保证原来,现在的行驶方向是两条平行线且方向一致.本题旨在考查平行线的判定与空间观念。解题时可根据选项中两次拐弯的角度画出汽车行驶的方向,再判定其是否相同,应选A.【例】如图4,已知B⊥AC,EF⊥AC,、F为垂足,G是AB上一点,且∠∠.求证:∠AGD=∠ABC.证明:因为BD⊥AC,EF⊥AC.所以∥EF.所以∠∠1.因为∠∠,所以∠∠.所以GD∥BC.所以∠AGD=∠ABC.点拨:审题时,根据分析,只看相关线段组成的图形而不考虑其他部分,这样就能避免图形的其他部分干扰思路.7图4第三章变量之间的关系考点分析:本章的内容不会太难,以填空选择考核为主,偶有实际问题的解决占—10分值;表示变量间关系的三大方法:一.列表法。采用数表相结合的形式,运用表格可以表示两个变量之间的关系。列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。列表法最大的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。例在全国抗击终于研制出一种治疗非典型肺炎的抗生素。据临床观察:如果成人按规定的剂量注射这种抗生素,注射药液后每毫升血液中的含药量(微克)与时间(分钟)之间的关系近似地满足下表:时间020406080100120140160180200220240260分钟)含药量02465.75.24.84.443.63.22.82.42微克)()上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?()当注射药液60分钟后血液中含药量是多少?()据临床观察:每毫升血液中含药量不少于4微克时,控制效的。如果病人按规定的剂量注射该药液后,那么这一次注射的药液经过多长时间后控制病情开始有效?这个有效时间有多长?二.关系式法。关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以根据已知因变量的值求出相应的自变量的值。8例已知梯形上底的长是,下底的长是15,高是,梯形面积为。()梯形面积y与上底长x之间的关系式是什么?()用表格表示当x从10变到20时(每次增加),y的相应值;()当x每增加1时,y如何变化?说说你的理由;()当x=0时,y等于什么?此时它表示的什么?三.图象法。图象法是用图象来表示两个变量之间的关系,通常用横轴上的点表示自变量,用纵轴上的点表示因变量,用坐标表示每对自变量和因变量的对应值所在位置。图象法的特点是形象直观,可以形象地反映出变量之间关系的变化趋势和某些性质,但是根据图象往往难以得到准确的对应值。要从图象中获取信息,必须结合具体情境理解图象上点的意义,一要看横轴、纵轴分别表示哪个变量,二要看该点所在的水平方向、竖直方向的位置。速度
路程2
213
13时间
时间汽车的“路程-时间”图像
汽车的“速度-时间”图像1表示汽车由静止均速向前走
1表示汽车由静止均加速运动2表示汽车停止运动2表示汽车保持一定的速度运动3表示汽车均速往回走,回到起点。3表示汽车均减速运动,最后停止运动!练习一:1.汽车速度与行驶时间之间的关系可以用图象来表示,下图中A、、、D四个图象,可以分别用一句话来描述:(1)在某段时间里,速度先越来越快,接着越来越慢()(2)在某段时间里,汽车速度始终保持不变。()(3)在某段时间里,汽车速度越来越快。()(4)在某段时间里,汽车速度越来越慢。()9例如图是某天温度变化的情况。(1)上午9时的温度是多少?12时呢?(2)这一天的最高温度是多少?是在几时达到的?最低温度呢?(3)这一天的温差是多少?从最低温度到最高温度经过了多长时间?(4)在什么时间范围内温度在上升?在什么时间范围内温度在下降?(5)图中A点表示的是什么?B点呢?一、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。2y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。二、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点。三、事物变化趋势的描述对事物变化趋势的描述一般有两种:10随着自变量x的逐渐增加(大),因变量y函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大)随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.四、估计(或者估算)对事物的估计(或者估算)有三种:利用事物的变化规律进行估计(或者估算).x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量(尾数-首数)/次数或相差年数)等等;利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;利用关系式:首先求出关系式,然后直接代入求值即可.11第四章、三角形考点分析:本册书的考核重点涉及到填空、选择、说理题;说明两个三角形全等为必考;占15—20分值。一、三角形的性质(1)边上的性质:三角形的任意两边之和大于第三边三角形的任意两边之差小于第三边(2)角上的性质:三角形三内角和等于180度**另外:三角形的一个外角等于和它不相邻的两个内角之和,即∠ACD=∠A+∠B练习一:、下列每组分别是三根小木棒的长度,用它们能摆成三角形吗?(单位:厘米。填“能”或“不能”)①3,,5()②8,7,()③13,12,()④5,,11()、在△ABC,AB=,BC=,那么<AC<___、一个三角形的两边长分别是3和8,而第三边长为奇数,那么第三边长是______、已知一个等腰三角形的一边是3cm,一边是7cm,这个三角形的周长是_________12ACD
1EB(第6题)(第7题)、如上图,∠°,∠D=20°,则∠A=度、如上图,AD⊥BC,∠1=40°,∠°,则∠B=度,∠C=度二、三角形的中线、角平分线、高线、中垂线的概念、中线:线段AE是三角形BC边上的中线__________________、角平分线线段AD是三角形∠的角平分线.______________、高线线段AD是边上的高__________________、垂直平分线1)_______________直线DE是BC边上的中垂线2)_________________练习二:如图,在△中,BE是边AC上的中线。已知AB=4,AC=3,BE=5,则:AE=_______△ABE的周长=________.第1题第2题第3题如图,CE,CF分别是△的内角平分线和外角平分线,则∠ECF的度数=______度.如图,AD、BF都是△的高线,若∠CAD=30度,则∠CBF=______度。13三、三角形全等的判定方法(1)边边边公理(SSS三边对应相等的两个三角形全等(2)边角边公理(SAS(3)角边角公理(ASA(4)角角边公理(AAS(5)斜边、直角边公理(HL,只适用于直角三角形)斜边和一条直角边对应相等的两个直角三角形全等。练习三:1如图已知AC平分∠BCD,要说明△ABC≌△ADC,还需要增加一个什么条件请说明理由。AD=BCABC≌△CDA、如图,已知AB=ED,AF=CD,EF=BC,明∠EFD=∠的理由。、能力提升:如图:AC和DB相交于点若AB=DC,AC=DB,则∠B=∠C,请说明理由.A例如图所示,在△ABC中,AB=AC,D是BC的中点,点E在AD上,则图中的全等三角形共()A.1对B.2对C.3对D.4对EBC
D14例根据下列各组条件,能判△ABC≌△’)A.AB=’,BC=’,A=∠’B.∠=∠=∠AC=’’C.AB=’△ABC=△’’’OD.∠=∠=∠=∠’BAE例如图所示,OA=OB,OC=OD,∠=60=25DC则∠等于__________.例已知:如图所示,、、、D在同一直线上,AD=BC,AE=BF,CE=DF,试说1)DF∥CE2)DE=CF.ADF12ECB四、角平分线的性:角平分线上的任意一点到这个角两边的距如图,若点P是∠的平分线上一点,并PB⊥AB,PC⊥AC,则_____________书写格:∵点P是∠的平分线上一点,PB⊥AB,PC⊥AC,∴PC=PB练习四:如图在△ABC中,AD是△BAC的角平分线,DE是△ABD的高线,∠C=90度。若DE=2,BD=3,求线段BC的长。五、线段中垂线的性质1、线段垂直平分线的性:15线段的垂直平分线上的点到线段两端点的距离相等。几何表述:练习五:如下图,EF是AB的中垂线,分别延长BE、AE至D,,使DE=CE,则AD与BC相等吗?请说明理由。六、作三角形(尺规作线段和角)第五章、生活中的轴对称考点分析:内容相对简单,主要是让学生感受生活中的轴对称,能够根据轴对称现象解决一些简单的题目!但结合三角全等的内容来考核的话,就会有一定的深度;这里特别提醒同学们要注意的是:简单的轴对称图形的一些性质,希望大家要记住!占5—10分。一、轴对称图形如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。性质一:角平分线上的任意一点到这个角两边的距离相等性质二:线段的垂直平分线上的点到线段两端点的距离相等。性质三:等腰三角形时轴对称图形,它的角平分线、底边上的高、底边上的中线重合(简称“三线合一”性质四:等腰三角形的来那个底角相等;性质五:如果一个三角形有两个角相等,那么它们所对的边也相等。其他性质:轴对称的两个图形的对应点所连的线段被对称轴垂直平分;它们的对应线段相等,对应角相等。例下列图形中是轴对称图形的有()A.1个B.2个C.3个D.4个16例如图,把一个正方形三次对折后沿虚线剪下,得到的图形是()上折
右折右下方折沿虚线剪开ABCD二、成轴对称对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。可以说成:这两个图形关于某条直线对称。三、角平分线的性质1、角平分线所在的直线是该角的对称轴。2、性质:角平分线上的点到这个角的两边的距离相等。3、尺规作图:作一个角的角平分线。四、线段的垂直平分线1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。3、尺规作图:作一条线段的垂直平分线。A例如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,则ΔABD的周长为。EBDC五、等腰三角形1、有两条边相等的三角形叫做等腰三角形;2、相等的两条边叫做腰;另一边叫做底边;3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角;4、三条边都相等的三角形也是等腰三角形。175、等腰三角形是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角的平分线,或底边上的中线所在的直线都是它的对称轴。6、等腰三角形底边上的高,底边上的中线,顶角的平分线互相重合,简称为线合一7、等腰三角形的两个底角相等,简写成六、等边三角形1、等边三角形是指三边都相等的三角形,又称正三角形2、等边三角形有三条对称轴,三角形的高、角平分线和中线所在的直线都是它的对称轴。。3、等边三角形的三边都相等,三个内角都是60例下列图形中,是轴对称图形的有()个.①角;②线段;③等腰三角形;④等边三角形;⑤三角形.A.1个B.2个C.3个D.4个七、轴对称的性质1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。2、关于某条直线对称的两个图形是全等图形。3那么对应点所连的线段被对称轴垂直平分。4、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。八、镜面对称当物体正对镜面摆放时,镜面会改变它的左右方向;当垂直于镜面摆放时,镜面会改变它的上下方向;如果是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样;例一辆汽车的牌照在车下方水坑中的像如图所示,则这辆汽车的牌照号码应为.·18练习一(能力提升):1、如图,已知:△中,BC<AC,AB边上的垂直平分线DE交AB于,交于,AC=9cm,△的周长为15cm,求BC的长.2、如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为、,(1)∠PCD=∠PDC吗?为什么?(2)OP是CD的垂直平分线吗?为什么?ACPODB第六章概率考点分析:本章内容以填空选择为主,偶尔出现在大题;占5-15分值;要求:会判定三类事件(必然事件、不可能事件、不确定事件)及三类事件发生可能性的大一、事件:、事件分为必然事件、不可能事件、不确定事件。、必然事件:肯定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。例给出下
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度广告发布合同广告代理及发布协议3篇
- 2024年度版美发店租赁合同模板下载2篇
- 2024版电子产品供应与代理销售合同2篇
- 2024年个人小额借款合同9篇
- 2024年度高校教师人事代理合同2篇
- 净水器品牌2024年度代理经营合同2篇
- 2024年互惠共赢:商务咨询中介合同2篇
- 2024年事业单位医疗卫生人员聘用协议2篇
- 股票合作协议模板三篇
- 教师与学生之间的有效沟通计划
- GB/T 12232-1989通用阀门法兰连接铁制闸阀
- 模仿式二声部课件
- 使用Pandas进行数据分析课件
- 某矿业有限责任公司十三五发展规划课件
- Unit 5 课后阅读课件-人教版高中英语必修第一册
- 有趣的化学启蒙课课件
- 绽放校园文明之花创建文明校园文明礼仪主题班会课件
- 国家开放大学《机械制造基础》形考任务(1-4)试题答案解析
- 2023安规考试题含答案
- 推进“西学中”人才培养实施方案
- 小学科学苏教二年级上册4单元奇妙的光《明亮与黑暗》教学设计定稿(喻晓芳)
评论
0/150
提交评论