2023届福建省顺昌一中高一数学第二学期期末考试模拟试题含解析_第1页
2023届福建省顺昌一中高一数学第二学期期末考试模拟试题含解析_第2页
2023届福建省顺昌一中高一数学第二学期期末考试模拟试题含解析_第3页
2023届福建省顺昌一中高一数学第二学期期末考试模拟试题含解析_第4页
2023届福建省顺昌一中高一数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某市电视台为调查节目收视率,想从全市3个县按人口数用分层抽样的方法抽取一个容量为的样本,已知3个县人口数之比为,如果人口最多的一个县抽出60人,那么这个样本的容量等于()A.96 B.120 C.180 D.2402.若,,则的终边所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限3.袋中共有完全相同的4只小球,编号为1,2,3,4,现从中任取2只小球,则取出的2只球编号之和是偶数的概率为()A. B. C. D.4.已知的内角、、的对边分别为、、,且,若,则的外接圆面积为()A. B. C. D.5.某兴趣小组合作制作了一个手工制品,并将其绘制成如图所示的三视图,其中侧视图中的圆的半径为3,则制作该手工制品表面积为()A. B. C. D.6.在锐角中,若,则角的大小为()A.30° B.45° C.60° D.75°7.若,则()A. B. C. D.8.在△ABC中,角A,B,C所对的边分别为a,b,c,若a﹣b=ccosB﹣ccosA,则△ABC的形状为()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰三角形或直角三角形9.在区间上随机选取一个数,则的概率为()A. B. C. D.10.已知数列共有项,满足,且对任意、,有仍是该数列的某一项,现给出下列个命题:(1);(2);(3)数列是等差数列;(4)集合中共有个元素.则其中真命题的个数是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线平面,,那么在平面内过点P与直线m平行的直线有________条.12.已知等差数列中,其前项和为,且,,当取最大值时,的值等于_____.13.已知向量,,则的最大值为_______.14.下边程序执行后输出的结果是().15.圆上的点到直线的距离的最小值是______.16.函数()的值域是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点,,点为曲线上任意一点且满足(1)求曲线的方程;(2)设曲线与轴交于两点,点是曲线上异于的任意一点,直线分别交直线:于点,试问轴上是否存在一个定点,使得?若存在,求出点的坐标;若不存在,请说明理由.18.已知,,求的值.19.已知分别是内角的对边,.(1)若,求(2)若,且求的面积.20.总书记在党的十九大报告中指出,要在“幼有所育、学有所教、劳有所得、病有所医、老有所养、住有所居、弱有所扶”上不断取得新进展,保证全体人民在共建共享发展中有更多获得感.现S市政府针对全市10所由市财政投资建设的敬老院进行了满意度测评,得到数据如下表:敬老院ABCDEFGHIK满意度x(%)20342519262019241913投资原y(万元)80898978757165626052(1)求投资额关于满意度的相关系数;(2)我们约定:投资额关于满意度的相关系数的绝对值在0.75以上(含0.75)是线性相关性较强,否则,线性相关性较弱.如果没有达到较强线性相关,则采取“末位淘汰”制(即满意度最低的敬老院市财政不再继续投资,改为区财政投资).求在剔除“末位淘汰”的敬老院后投资额关于满意度的线性回归方程(系数精确到0.1)参考数据:,,,,.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.线性相关系数.21.已知数列中,..(1)写出、、;(2)猜想的表达式,并用数学归纳法证明.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据分层抽样的性质,直接列式求解即可.【详解】因为3个县人口数之比为,而人口最多的一个县抽出60人,则根据分层抽样的性质,有,故选:B.【点睛】本题考查分层抽样,解题关键是明确分层抽样是按比例进行抽样.2、B【解析】由一全正二正弦三正切四余弦可得的终边所在的象限为第二象限,故选B.考点:三角函数3、C【解析】

先求出在编号为1,2,3,4的小球中任取2只小球的不同取法,再求出取出的2只球编号之和是偶数的不同取法,然后求概率即可得解.【详解】解:在编号为1,2,3,4的小球中任取2只小球,则有共6种取法,则取出的2只球编号之和是偶数的有共2种取法,即取出的2只球编号之和是偶数的概率为,故选:C.【点睛】本题考查了古典型概率公式,属基础题.4、D【解析】

先化简得,再利用正弦定理求出外接圆的半径,即得的外接圆面积.【详解】由题得,所以,所以,所以,所以.由正弦定理得,所以的外接圆面积为.故选D【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.5、D【解析】

由三视图可知,得到该几何体是由两个圆锥组成的组合体,根据几何体的表面积公式,即可求解.【详解】由三视图可知,该几何体是由两个圆锥组成的组合体,其中圆锥的底面半径为3,高为4,所以几何体的表面为.选D.【点睛】本题考查了几何体的三视图及表面积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.6、B【解析】

直接利用正弦定理计算得到答案.【详解】根据正弦定理得到:,故,是锐角三角形,故.故选:.【点睛】本题考查了正弦定理解三角形,意在考查学生的计算能力.7、A【解析】试题分析:,故选A.考点:两角和与差的正切公式.8、D【解析】

用正弦定理化边为角,再由诱导公式和两角和的正弦公式化简变形可得.【详解】∵a﹣b=ccosB﹣ccosA,∴,∴,∴,∴或,∴或,故选:D.【点睛】本题考查正弦定理,考查三角形形状的判断.解题关键是诱导公式的应用.9、C【解析】

根据几何概型概率公式直接求解可得结果.【详解】由几何概型概率公式可知,所求概率本题正确选项:【点睛】本题考查几何概型中的长度型概率问题的求解,属于基础题.10、D【解析】

对任意的、,有仍是该数列的某一项,可得出是该数列中的项,由于,可得,即,以此类推即可判断出结论.【详解】对任意、,有仍是该数列的某一项,,当时,则,必有,即,而或.若,则,而、、,舍去;若,此时,,同理可得.可得数列为:、、、、.综上可得:(1);(2);(3)数列是等差数列;(4)集合,该集合中共有个元素.因此,(1)(2)(3)(4)都正确.故选:D.【点睛】本题考查有关数列命题真假的判断,涉及数列的新定义,考查推理能力与分类讨论思想的应用,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

利用线面平行的性质定理来进行解答.【详解】过直线与点可确定一个平面,由于为公共点,所以两平面相交,不妨设交线为,因为直线平面,所以,其它过点的直线都与相交,所以与也不会平行,所以过点且平行于的直线只有一条,在平面内,故答案为:1.【点睛】本题考查线面平行的性质定理,是基础题.12、或【解析】

设等差数列的公差为,由可得出与的等量关系,然后求出的表达式,解不等式,即可得出使得取得最大值的正整数的值.【详解】设等差数列的公差为,由,可得,可得,,令,即,,解得.因此,当或时,取得最大值.故答案为:或.【点睛】本题考查等差数列前项和的最大值的求解,可利用二次函数的基本性质来求,也可以转化为等差数列所有的非负项之和的问题求解,考查化归与转化思想,属于中等题.13、.【解析】

计算出,利用辅助角公式进行化简,并求出的最大值,可得出的最大值.【详解】,,,所以,,当且仅当,即当,等号成立,因此,的最大值为,故答案为.【点睛】本题考查平面向量模的最值的计算,涉及平面向量数量积的坐标运算以及三角恒等变换思想的应用,考查分析问题和解决问题的能力,属于中等题.14、15【解析】试题分析:程序执行中的数据变化如下:,输出考点:程序语句15、【解析】

求圆心到直线的距离,用距离减去半径即可最小值.【详解】圆C的圆心为,半径为,圆心C到直线的距离为:,所以最小值为:故答案为:【点睛】本题考查圆上的点到直线的距离的最值,若圆心距为d,圆的半径为r且圆与直线相离,则圆上的点到直线距离的最大值为d+r,最小值为d-r.16、【解析】

由,根据基本不等式即可得出,然后根据对数函数的单调性即可得出,即求出原函数的值域.【详解】解:,当且仅当,时取等号,;原函数的值域是.故答案为:.【点睛】考查函数的值域的定义及求法,基本不等式的应用,以及对数函数的单调性,增函数的定义.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)存在点使得成立.【解析】

(1)设P(x,y),由|PA|=2|PB|,得=2,由此能求出曲线的方程.(2)由题意得M(0,1),N(0,-1),设点R(x0,y0),(x0≠0),由点R在曲线上,得=1,直线RM的方程,从而直线RM与直线y=3的交点为,直线RN的方程为,从而直线RN与直线y=3的交点为,假设存在点S(0,m),使得成立,则,由此能求出存在点S,使得成立,且S点的坐标为.【详解】(1)设,由,得:,整理得.所以曲线的方程为.(2)由题意得,,.设点,由点在曲线上,所以.直线的方程为,所以直线与直线的交点为.直线的方程为所以直线与直线的交点为.假设存在点,使得成立,则,.即,整理得.因为,所以,解得.所以存在点使得成立,且点的坐标为.【点睛】本题考查曲线方程的求法,考查是否存在满足向量积为0的点的判断与求法,考查圆、直线方程、向量的数量积公式等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.18、【解析】

∵,且,∴,则,∴===-.考点:本题考查了三角恒等变换19、(1);(2)1【解析】试题分析:(1)由,结合正弦定理可得:,再利用余弦定理即可得出(2)利用(1)及勾股定理可得c,再利用三角形面积计算公式即可得出试题解析:(1)由题设及正弦定理可得又,可得由余弦定理可得(2)由(1)知因为,由勾股定理得故,得所以的面积为1考点:正弦定理,余弦定理解三角形20、(1)0.72;(2)【解析】

(1)由题意,根据相关系数的公式,可得的值,即可求解;(2)由(1)可知,得投资额关于满意度没有达到较强线性相关,利用公式求得的值,即可得出回归直线的方程.【详解】(1)由题意,根据相关系数的公式,可得.(2)由(1)可知,因为,所以投资额关于满意度没有达到较强线性相关,所以要“末位淘汰”掉K敬老院.重新计算得,,,,所以,.所以所求线性回归方程为.【点睛】本题主要考查了回归分析的应用,同时考查了回归系数的计算,以及回归直线方程的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论