2023届河北省鸡泽一中高一数学第二学期期末质量检测模拟试题含解析_第1页
2023届河北省鸡泽一中高一数学第二学期期末质量检测模拟试题含解析_第2页
2023届河北省鸡泽一中高一数学第二学期期末质量检测模拟试题含解析_第3页
2023届河北省鸡泽一中高一数学第二学期期末质量检测模拟试题含解析_第4页
2023届河北省鸡泽一中高一数学第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若两个正实数,满足,且不等式有解,则实数的取值范围是()A. B. C. D.2.如图,圆的半径为1,是圆上的定点,是圆上的动点,角的始边为射线,终边为射线,过点作直线的垂线,垂足为,将点到直线的距离表示成的函数,则在上的图象大致为()A. B.C. D.3.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A. B. C. D.4.已知等比数列,若,则()A. B. C.4 D.5.已知向量,,则与夹角的大小为()A. B. C. D.6.如图,位于处的海面观测站获悉,在其正东方向相距40海里的处有一艘渔船遇险,并在原地等待营救.在处南偏西且相距20海里的处有一救援船,其速度为海里小时,则该船到求助处的时间为()分钟.A.24 B.36 C.48 D.607.已知等比数列的前项和为,,,则()A.31 B.15 C.8 D.78.“”是“直线与直线互相垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.若一个正四棱锥的侧棱和底面边长相等,则该正四棱锥的侧棱和底面所成的角为()A.30° B.45° C.60° D.90°10.若cosα=13A.13 B.-13 C.二、填空题:本大题共6小题,每小题5分,共30分。11.若、、这三个的数字可适当排序后成为等差数列,也可适当排序后成等比数列,则________________.12.已知实数,是与的等比中项,则的最小值是______.13.中,若,,则角C的取值范围是________.14.已知一个扇形的周长为4,则扇形面积的最大值为______.15.已有无穷等比数列的各项的和为1,则的取值范围为__________.16.设ω为正实数.若存在a、b(π≤a<b≤2π),使得三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)从某厂生产的一批零件1000个中抽取20个进行研究,应采用什么抽样方法?(2)对(1)中的20个零件的直径进行测量,得到下列不完整的频率分布表:(单位:mm)分组频数频率268合计201①完成频率分布表;②画出其频率分布直方图.18.已知公差大于零的等差数列满足:.(1)求数列通项公式;(2)记,求数列的前项和.19.已知函数,且,.(1)求该函数的最小正周期及对称中心坐标;(2)若方程的根为,且,求的值.20.(1)设1<x<,求函数y=x(3﹣2x)的最大值;(2)解关于x的不等式x2-(a+1)x+a<1.21.设函数.(1)求函数的最小正周期.(2)求函数的单调递减区间;(3)设为的三个内角,若,,且为锐角,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

利用基本不等式求得的最小值,根据不等式存在性问题,解一元二次不等式求得的取值范围.【详解】由于,而不等式有解,所以,即,解得或.故选:D【点睛】本小题主要考查利用基本不等式求最小值,考查不等式存在性问题的求解,考查一元二次不等式的解法,属于中档题.2、B【解析】

计算函数的表达式,对比图像得到答案.【详解】根据题意知:到直线的距离为:对应图像为B故答案选B【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.3、B【解析】由三视图可知,该几何体是一个棱长为的正方体挖去一个圆锥的组合体,正方体体积为,圆锥体积为几何体的体积为,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.4、D【解析】

利用等比数列的通项公式求得公比,进而求得的值.【详解】∵,∴.故选:D.【点睛】本题考查等比数列通项公式,考查运算求解能力,属于基础题.5、D【解析】

根据向量,的坐标及向量夹角公式,即可求出,从而根据向量夹角的范围即可求出夹角.【详解】向量,,则;∴;∵0≤<a,b>≤π;∴<a,b>=.故选:D.【点睛】本题考查数量积表示两个向量的夹角,已知向量坐标代入夹角公式即可求解,属于常考题型,属于简单题.6、A【解析】

利用余弦定理求出的长度,然后根据速度、时间、路程之间的关系求出时间即可.【详解】由题意可知:,运用余弦定理可知:该船到求助处的时间,故本题选A.【点睛】本题考查了余弦定理的应用,考查了数学运算能力.7、B【解析】

利用基本元的思想,将已知条件转化为的形式,由此求得,进而求得.【详解】由于数列是等比数列,故,由于,故解得,所以.故选:B.【点睛】本小题主要考查等比数列通项公式的基本量的计算,考查等比数列前项和公式,属于基础题.8、A【解析】

对分类讨论,利用两条直线相互垂直的充要条件即可得出.【详解】由题意,当时,两条直线分别化为:,,此时两条直线相互垂直;当时,两条直线分别化为:,,此时两条直线不垂直,舍去;当且时,由两条直线相互垂直,则,即,解得或;综上可得:或,两条直线相互垂直,所以“”是“直线与直线互相垂直”的充分不必要条件.故选:A.【点睛】本题考查了简易逻辑的判定方法、两条直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题.9、B【解析】

正四棱锥,连接底面对角线,在中,为侧棱与地面所成角,通过边的关系得到答案.【详解】正四棱锥,连接底面对角线,,易知为等腰直角三角形.中点为,又正四棱锥知:底面即为所求角为,答案为B【点睛】本题考查了线面夹角的计算,意在考察学生的计算能力和空间想象力.10、D【解析】

利用二倍角余弦公式cos2α=2【详解】由二倍角余弦公式可得cos2α=2【点睛】本题考查二倍角余弦公式的应用,着重考查学生对二倍角公式熟记和掌握情况,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由,,可知,、、成等比数列,可得出,由、、或、、成等差数列,可得出关于、的方程组,解出这两个未知数的值,即可计算出的值.【详解】由于,,若不是等比中项,则有或,两个等式左边均为正数,右边均为负数,不合题意,则必为等比中项,所以,将三个数由大到小依次排列,则有、、成等差数列或、、成等差数列.①若、、成等差数列,则,联立,解得,此时,;②若、、成等差数列,则,联立,解得,此时,.综上所述,.故答案为:.【点睛】本题考查等比数列和等差数列定义的应用,根据题意列出方程组是解题的关键,考查推理能力与计算能力,属于中等题.12、【解析】

通过是与的等比中项得到,利用均值不等式求得最小值.【详解】实数是与的等比中项,,解得.则,当且仅当时,即时取等号.故答案为:.【点睛】本题考查了等比中项,均值不等式,1的代换是解题的关键.13、;【解析】

由,利用正弦定理边角互化以及两角和的正弦公式可得,进而可得结果.【详解】由正弦定理可得,又,则,即,则,C是三角形的内角,则,故答案为:.【点睛】本题注意考查正弦定理以及两角和的正弦公式的应用,属于中档题.正弦定理主要有三种应用:求边和角、边角互化、外接圆半径.14、1【解析】

表示出扇形的面积,利用二次函数的单调性即可得出.【详解】设扇形的半径为,圆心角为,则弧长,,即,该扇形的面积,当且仅当时取等号.该扇形的面积的最大值为.故答案:.【点睛】本题考查了弧长公式与扇形的面积计算公式、二次函数的单调性,考查了计算能力,属于基础题.15、【解析】

根据无穷等比数列的各项和表达式,将用公比表示,根据的范围求解的范围.【详解】因为且,又,且,则.【点睛】本题考查无穷等比数列各项和的应用,难度一般.关键是将待求量与公比之间的关系找到,然后根据的取值范围解决问题.16、ω∈[【解析】

由sinωa+sinωb=2⇒sinωa=sinωb=1.而[ωa,ωb]⊆[ωπ,2ωπ]【详解】由sinωa+而[ωa,ωb]⊆[ωπ,2ωπ],故已知条件等价于:存在整数ωπ当ω≥4时,区间[ωπ,2ωπ]的长度不小于4π当0<ω<4时,注意到,[ωπ故只要考虑如下几种情形:(1)ωπ≤π2<(2)ωπ≤5(3)ωπ≤9综上,并注意到ω≥4也满足条件,知ω∈[9故答案为:ω∈[【点睛】本题主要考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)系统抽样;(2)①分布表见解析;②直方图见解析.【解析】

(1)因需要研究的个体很多,且差异不明显,适宜用系统抽样.(2)①直接计算频率即可.②根据①中计算出的数据,用每一组的频率/组距作为纵坐标,即可做出频率分布直方图.【详解】某厂生产的一批零件1000个,差异不明显,且因需要研究的个体很多.

所以适宜用系统抽样.(2)①频率分布表为分组频数频率20.160.380.440.2合计201②频率分布直方图为.分组频数频率频率/组距20.10.0260.30.0680.40.0840.20.04合计201【点睛】本题考查频率分布表和根据频率分布表绘制频率分布直方图,属于基础题.18、(1)(2)【解析】

(1)由题可计算得,求出公差,进而求出通项公式(2)利用等差数列和等比数列的求和公式计算即可。【详解】解:(1)由公差及,解得,所以,所以通项(2)由(1)有,所以数列的前项和.【点睛】本题考查等差数列的通项公式以及等差数列和等比数列的求和公式,属于简单题。19、(1)最小正周期为.对称中心坐标为;(2)-1【解析】

(1)由题意两未知数列两方程即可求出、的值,再进行三角变换,可得的解析式,再利用正弦函数的周期公式、图象的对称性,即可得出结论.(2)先由条件求得的值,可得的值.【详解】(1)由,得:,解得:,,,即函数的最小正周期为.由得:函数的对称中心坐标为;(2)由题意得:,即,或,则或,由知:,.【点睛】本题主要考查三角恒等变换,正弦函数的周期性、图象的对称性,以及三角函数求值.20、(1)(2)见解析【解析】

(1)由题意利用二次函数的性质,求得函数的最大值.(2)不等式即(x﹣1)(x﹣a)<1,分类讨论求得它的解集.【详解】(1)设1<x,∵函数y=x(3﹣2x)2,故当x时,函数取得最大值为.(2)关于x的不等式x2﹣(a+1)x+a<1,即(x﹣1)(x﹣a)<1.当a=1时,不等式即(x﹣1)2<1,不等式无解;当a>1时,不等式的解集为{x|1<x<a};当a<1时,不等式的解集为{x|a<x<1}.综上可得,当a=1时,不等式的解集为∅,当a>1时,不等式的解集为{x|1<x<a},当a<1时,不等式的解集为{x|a<x<1}.【点睛】本题主要考查二次函数的性质,求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论