2023届甘肃省兰州市西北师大附中数学高一下期末联考模拟试题含解析_第1页
2023届甘肃省兰州市西北师大附中数学高一下期末联考模拟试题含解析_第2页
2023届甘肃省兰州市西北师大附中数学高一下期末联考模拟试题含解析_第3页
2023届甘肃省兰州市西北师大附中数学高一下期末联考模拟试题含解析_第4页
2023届甘肃省兰州市西北师大附中数学高一下期末联考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若圆上至少有三个不同的点到直线的距离为,则直线的斜率的取值范围是()A. B.C. D.2.已知向量,向量,且,那么等于()A. B. C. D.3.在数列中,已知,,则该数列前2019项的和()A.2019 B.2020 C.4038 D.40404.已知直线,平面,给出下列命题:①若,且,则②若,且,则③若,且,则④若,且,则其中正确的命题是()A.①③ B.②④ C.③④ D.①②5.已知的内角的对边分别为,若,则()A. B. C. D.6.设,则“”是“”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件7.平面过正方体ABCD—A1B1C1D1的顶点A,,,,则m,n所成角的正弦值为A. B. C. D.8.在中,角,,的对边分别是,,,若,则()A. B. C. D.9.已知实数满足且,则下列关系中一定正确的是()A. B. C. D.10.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思是“有一个人走378里,第一天健步行走,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地.”请问第三天走了()A.60里 B.48里 C.36里 D.24里二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的图象如下,则的值为__________.12.设公比为q(q>0)的等比数列{an}的前n项和为{Sn}.若,,则q=______________.13.设数列满足,,且,用表示不超过的最大整数,如,,则的值用表示为__________.14.已知向量,,且与垂直,则的值为______.15.若,则__________.16.函数的最小正周期为______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系xOy中,已知点,圆.(1)求过点P且与圆C相切于原点的圆的标准方程;(2)过点P的直线l与圆C依次相交于A,B两点.①若,求l的方程;②当面积最大时,求直线l的方程.18.已知常数且,在数列中,首项,是其前项和,且,.(1)设,,证明数列是等比数列,并求出的通项公式;(2)设,,证明数列是等差数列,并求出的通项公式;(3)若当且仅当时,数列取到最小值,求的取值范围.19.已知数列的前项和,且,数列满足:对于任意,有.(1)求数列的通项公式;(2)求数列的通项公式,若在数列的两项之间都按照如下规则插入一些数后,构成新数列:和两项之间插入个数,使这个数构成等差数列,求;(3)若不等式成立的自然数恰有个,求正整数的值.20.已知.(1)求的坐标;(2)设,求数列的通项公式;(3)设,,其中为常数,,求的值.21.已知函数.(I)当时,求不等式的解集;(II)若关于的不等式有且仅有一个整数解,求正实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

作出图形,设圆心到直线的距离为,利用数形结合思想可知,并设直线的方程为,利用点到直线的距离公式可得出关于的不等式,解出即可.【详解】如下图所示:设直线的斜率为,则直线的方程可表示为,即,圆心为,半径为,由于圆上至少有三个不同的点到直线的距离为,所以,即,即,整理得,解得,因此,直线的斜率的取值范围是.故选:C.【点睛】本题考查直线与圆的综合问题,解题的关键就是确定圆心到直线距离所满足的不等式,并结合点到直线的距离公式来求解,考查数形结合思想的应用,属于中等题.2、D【解析】

由两向量平行,其向量坐标交叉相乘相等,得到.【详解】因为,所以,解得:.【点睛】本题考查向量平行的坐标运算,考查基本运算,注意符号的正负.3、A【解析】

根据条件判断出为等差数列,利用等差数列的性质得到和之间的关系,得到答案.【详解】为等差数列【点睛】本题考查等差中项,等差数列的基本性质,属于简单题.4、A【解析】

根据面面垂直,面面平行的判定定理判断即可得出答案。【详解】①若,则在平面内必有一条直线使,又即,则,故正确。②若,且,与可平行可相交,故错误③若,即又,则,故正确④若,且,与可平行可相交,故错误所以①③正确,②④错误故选A【点睛】本题考查面面垂直,面面平行的判定,属于基础题。5、B【解析】

已知两角及一对边,求另一边,我们只需利用正弦定理.【详解】在三角形中由正弦定理公式:,所以选择B【点睛】本题直接属于正弦定理的直接考查,代入公式就能求解.属于简单题.6、C【解析】

首先解两个不等式,再根据充分、必要条件的知识选出正确选项.【详解】由解得.由得.所以“”是“”的必要而不充分条件故选:C【点睛】本小题主要考查充分、必要条件的判断,考查绝对值不等式的解法,属于基础题.7、A【解析】

试题分析:如图,设平面平面=,平面平面=,因为平面,所以,则所成的角等于所成的角.延长,过作,连接,则为,同理为,而,则所成的角即为所成的角,即为,故所成角的正弦值为,选A.【点睛】求解本题的关键是作出异面直线所成的角,求异面直线所成角的步骤是:平移定角、连线成形、解形求角、得钝求补.8、D【解析】

由题意,再由余弦定理可求出,即可求出答案.【详解】由题意,,设,由余弦定理可得:,则.故选D.【点睛】本题考查了正、余弦定理的应用,考查了计算能力,属于中档题.9、D【解析】

由已知得,然后根据不等式的性质判断.【详解】由且,,由得,A错;由得,B错;由于可能为0,C错;由已知得,则,D正确.故选:D.【点睛】本题考查不等式的性质,掌握不等式性质是解题关键,特别是性质:不等式两同乘以一个正数,不等号方向不变,不等式两边同乘以一个负数,不等号方向改变.10、B【解析】

根据题意得出等比数列的项数、公比和前项和,由此列方程,解方程求得首项,进而求得的值.【详解】依题意步行路程是等比数列,且,,,故,解得,故里.故选B.【点睛】本小题主要考查中国古典数学文化,考查等比数列前项和的基本量计算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由函数的图象的顶点坐标求出,由半个周期求出,最后将特殊点的坐标求代入解析式,即可求得的值.【详解】解:由图象可得,,得.,将点代入函数解析式,得,,,又因为,所以故答案为:【点睛】本题考查由的部分图象确定其解析式.(1)根据函数的最高点的坐标确定(2)根据函数零点的坐标确定函数的周期求(3)利用最值点的坐标同时求的取值,即可得到函数的解析式.12、【解析】将,两个式子全部转化成用,q表示的式子.即,两式作差得:,即:,解之得:(舍去)13、【解析】

由题设可得知该函数的最小正周期是,令,则由等差数列的定义可知数列是首项为,公差为的等差数列,即,由此可得,将以上个等式两边相加可得,即,所以,故,应填答案.点睛:解答本题的关键是借助题设中提供的数列递推关系式,先求出数列的通项公式,然后再运用列项相消法求出,最后借助题设中提供的新信息,求出使得问题获解.14、【解析】

根据与垂直即可得出,进行数量积的坐标运算即可求出x的值.【详解】;;.故答案为.【点睛】本题考查向量垂直的充要条件,以及向量数量积的坐标运算,属于基础题.15、;【解析】

把分子的1换成,然后弦化切,代入计算.【详解】.故答案为-1.【点睛】本题考查三角函数的化简求值.解题关键是“1”的代换,即,然后弦化切.16、【解析】

利用函数y=Atan(ωx+φ)的周期为,得出结论.【详解】函数y=3tan(3x)的最小正周期是,故答案为:.【点睛】本题主要考查函数y=Atan(ωx+φ)的周期性,利用了函数y=Atan(ωx+φ)的周期为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)①;②或.【解析】

(1)设所求圆的圆心为,而所求圆的圆心与、共线,故圆心在直线上,又圆同时经过点与点,求出圆的圆心和半径,即可得答案;(2)①由题意可得为圆的直径,求出的坐标,可得直线的方程;②当直线的斜率不存在时,直线方程为,求出,的坐标,得到的面积;当直线的斜率存在时,设直线方程为.利用基本不等式、点到直线的距离公式求得,则直线方程可求.【详解】(1)由,得,圆的圆心坐标,设所求圆的圆心为.而所求圆的圆心与、共线,故圆心在直线上,又圆同时经过点与点,圆心又在直线上,则有:,解得:,即圆心的坐标为,又,即半径,故所求圆的方程为;(2)①由,得为圆的直径,则过点,的方程为,联立,解得,直线的斜率,则直线的方程为,即;②当直线的斜率不存在时,直线方程为,此时,,,;当直线的斜率存在时,设直线方程为.再设直线被圆所截弦长为,则圆心到直线的距离,则.当且仅当,即时等号成立.此时弦长为10,圆心到直线的距离为5,由,解得.直线方程为.当面积最大时,所求直线的方程为:或.【点睛】本题考查圆的方程的求法、直线与圆的位置关系应用,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力和运算求解能力.18、(1)证明见解析,;(2)证明见解析,;(3).【解析】

(1)令,求出的值,再令,由,得出,将两式相减得,再利用等比数列的定义证明为常数,可得出数列为等比数列,并确定等比数列的首项和公比,可求出;(2)由题意得出,再利用等差数列的定义证明出数列为等差数列,确定等差数列的首项和公差,可求出数列的通项公式;(3)求出数列的通项公式,由数列在时取最小值,可得出当时,,当时,,再利用参变量分离法可得出实数的取值范围.【详解】(1)当时,有,即,;当时,由,可得,将上述两式相减得,,,且,所以,数列是以,以为公比的等比数列,;(2)由(1)知,,由等差数列的定义得,且,所以,数列是以为首项,以为公差的等差数列,因此,;(3)由(2)知,,,由数列在时取最小值,可得出当时,,当时,,由,得,得在时恒成立,由于数列在时单调递减,则,此时,;由,得,得在时恒成立,由于数列在时单调递减,则,此时,.综上所述:实数的取值范围是.【点睛】本题考查利用定义证明等比数列和等差数列,证明时需结合题中数列递推式的结构进行证明,同时也考查数列最值问题,需要结合题中条件转化为与项的符号相关的问题,利用参变量分离法可简化计算,考查化归与转化思想和运算求解能力,综合性较强,属于难题.19、(1);,;(3).【解析】

(1)令求出,然后令,由得出,两式相减可得出数列是等比数列,确定该数列的首项和公比,即可求出数列的通项公式;(2)令可计算出,再令,由可得出,两式相减求出,求出,再检验是否满足的表达式,由此可得出数列的通项公式,求出,由,以及可得出的值;(3)化简可得,分类讨论,当、时,不等式成立,当时,,利用判断数列的单调性,得出该数列的最大项,可知满足不等式,且和不满足该不等式,由此可得出实数的取值范围,进而求出正整数的值.【详解】(1)对任意的,.当时,,解得;当时,由得出,两式相减得,化简得,即,所以,数列是以为首项,以为公比的等比数列,因此,;(2)对于任意,有.当时,,;当时,由,可得,上述两式相减得,.适合上式,因此,.由于和两项之间插入个数,使得这个数成等差数列,这个数列的公差为.,且,所以,;(3)由,得.当、,该不等式显然成立;当时,,由,得,设,,当时,,即当时,,即,则.所以,数列的最大项为,又,.由题意可中,满足不等式,和不满足不等式.,则,因此正整数的值为.【点睛】本题考查利用求数列的通项公式、等差数列定义的应用,同时也考查了数列不等式的求解,涉及数列单调性的应用,考查推理能力与运算求解能力,属于中等题.20、(1);(2);(3)当时,;当或时,.【解析】

(1)利用题中定义结合平面向量加法的坐标运算可得出结果;(2)利用等差数列的求和公式和平面向量加法的坐标运算可得出数列的通项公式;(3)先计算出的表达式,然后分、、三种情况计算出的值.【详解】(1)由题意得;(2);(3).①当时,;②当时,;③当时,.【点睛】本题考查平面向量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论