2023届福建省晋江市四校数学高一第二学期期末教学质量检测试题含解析_第1页
2023届福建省晋江市四校数学高一第二学期期末教学质量检测试题含解析_第2页
2023届福建省晋江市四校数学高一第二学期期末教学质量检测试题含解析_第3页
2023届福建省晋江市四校数学高一第二学期期末教学质量检测试题含解析_第4页
2023届福建省晋江市四校数学高一第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.等比数列的前项和、前项和、前项和分别为,则().A. B.C. D.2.已知M为z轴上一点,且点M到点与点的距离相等,则点M的坐标为()A. B. C. D.3.一个长方体共一顶点的三条棱长分别是,这个长方体它的八个顶点都在同一个球面上,这个球的表面积是()A.12π B.18π C.36π D.6π4.已知平面平面,直线,直线,则直线,的位置关系为()A.平行或相交 B.相交或异面 C.平行或异面 D.平行、相交或异面5.关于x的不等式的解集是,则关于x的不等式的解集是()A. B.C. D.6.若()A. B. C. D.7.不等式的解集是()A. B.C.或 D.或8.如图,在平行六面体中,M,N分别是所在棱的中点,则MN与平面的位置关系是()A.MN平面B.MN与平面相交C.MN平面D.无法确定MN与平面的位置关系9.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为()A.40 B.36 C.30 D.2010.已知直线yx+2,则其倾斜角为()A.60° B.120° C.60°或120° D.150°二、填空题:本大题共6小题,每小题5分,共30分。11.若,,则___________.12.已知,,,则的最小值为______.13.把二进制数1111(2)化为十进制数是______.14.已知等差数列的前项和为,若,则_____15.若,则_______.16.如图中,,,,M为AB边上的动点,,D为垂足,则的最小值为______;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列为递增的等差数列,,且成等比数列.数列的前项和为,且满足.(1)求,的通项公式;(2)令,求的前项和.18.如图,当甲船位于处时获悉,在其正东方向相距20海里的处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往处救援?(角度精确到1°,参考数据:,)19.在中,角、、的对边分别为、、,为的外接圆半径.(1)若,,,求;(2)在中,若为钝角,求证:;(3)给定三个正实数、、,其中,问:、、满足怎样的关系时,以、为边长,为外接圆半径的不存在,存在一个或存在两个(全等的三角形算作同一个)?在存在的情兄下,用、、表示.20.如图,在正方体,中,,,,,分别是棱,,,,的中点.(1)求证:平面平面;(2)求平面将正方体分成的两部分体积之比.21.如图所示,在平面四边形ABCD中,AD=1,CD=2,AC=.(1)求cos∠CAD的值;(2)若cos∠BAD=-,sin∠CBA=,求BC的长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据等比数列前项和的性质,可以得到等式,化简选出正确答案.【详解】因为这个数列是等比数列,所以成等比数列,因此有,故本题选B.【点睛】本题考查了等比数列前项和的性质,考查了数学运算能力.2、C【解析】

根据题意先设,再根据空间两点间的距离公式,得到,再由点M到点与点的距离相等建立方程求解.【详解】设根据空间两点间的距离公式得因为点M到点与点的距离相等所以解得所以故选:C【点睛】本题主要考查了空间两点间的距离公式,还考查了运算求解的能力,属于基础题.3、A【解析】

先求长方体的对角线的长度,就是球的直径,然后求出它的表面积.【详解】长方体的体对角线的长是,所以球的半径是:,所以该球的表面积是,故选A.【点睛】该题考查的是有关长方体的外接球的表面积问题,在解题的过程中,首先要明确长方体的外接球的球心应在长方体的中心处,即长方体的体对角线是其外接球的直径,从而求得结果.4、C【解析】

根据直线与直线的位置关系,结合题意,进行选择.【详解】因为平面平面,直线,直线,所以直线没有公共点,所以两条直线平行或异面.故选:C.【点睛】本题考查直线与直线的位置关系,属基础题.5、D【解析】

由不等式与方程的关系可得且,则等价于,再结合二次不等式的解法求解即可.【详解】解:由关于x的不等式的解集是,由不等式与方程的关系可得且,则等价于等价于,解得,即关于x的不等式的解集是,故选:D.【点睛】本题考查了不等式与方程的关系,重点考查了二次不等式的解法,属基础题.6、D【解析】故.【考点定位】本题主要考查基本不等式的应用及指数不等式的解法,属于简单题.7、B【解析】

由题意,∴,即,解得,∴该不等式的解集是,故选.8、C【解析】

取的中点,连结,可证明平面平面,由于平面,可知平面.【详解】取的中点,连结,显然,因为平面,平面,所以平面,平面,又,故平面平面,又因为平面,所以平面.故选C.【点睛】本题考查了直线与平面的位置关系,考查了线面平行、面面平行的证明,属于基础题.9、C【解析】试题分析:利用分层抽样的比例关系,设从乙社区抽取户,则,解得.考点:考查分层抽样.10、B【解析】

根据直线方程求出斜率,根据斜率和倾斜角之间的关系即可求出倾斜角.【详解】由已知得直线的斜率,则倾斜角为120°,故选:B.【点睛】本题考查斜率和倾斜角的关系,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

将等式和等式都平方,再将所得两个等式相加,并利用两角和的正弦公式可求出的值.【详解】若,,将上述两等式平方得,①,②,①+②可得,求得,故答案为.【点睛】本题考查利用两角和的正弦公式求值,解题的关键就是将等式进行平方,结合等式结构进行变形计算,考查运算求解能力,属于中等题.12、【解析】

将所求的式子变形为,展开后可利用基本不等式求得最小值.【详解】解:,,,,当且仅当时取等号.故答案为1.【点睛】本题考查了“乘1法”和基本不等式,属于基础题.由于已知条件和所求的式子都是和的形式,不能直接用基本不等式求得最值,使用“乘1法”之后,就可以利用基本不等式来求得最小值了.13、.【解析】

由二进制数的定义可将化为十进制数.【详解】由二进制数的定义可得,故答案为:.【点睛】本题考查二进制数化十进制数,考查二进制数的定义,考查计算能力,属于基础题.14、1.【解析】

利用等差数列前项和公式能求出的值.【详解】解:∵等差数列的前项和为,若,

故答案为:.【点睛】本题考查等差数列前项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.15、【解析】

对两边平方整理即可得解.【详解】由可得:,整理得:所以【点睛】本题主要考查了同角三角函数基本关系及二倍角的正弦公式,考查观察能力及转化能力,属于较易题.16、【解析】

以为坐标原点建立平面直角坐标系,用坐标表示出的值,然后利用换元法求解出对应的最小值即可.【详解】如图所示,设,所以,根据条件可知:,所以,设,,,所以,所以,所以,所以当时,有最小值,最小值为.故答案为:.【点睛】本题考查利用坐标法以及换元法求解最值,着重考查逻辑推理和运算求解的能力,属于较难题(1)利用换元法求解最值时注意,换元后新元的取值范围;(2)三角函数中的一组“万能公式”:,.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】

(1)先根据成等比数列,可求出公差,即得的通项公式;根据可得的通项公式;(2)由(1)可得的通项公式,用错位相减法计算它的前n项和,即得。【详解】(1)由题得,,设数列的公差为,则有,解得,那么等差数列的通项公式为;数列的前项和为,且满足,当时,,可得,当时,可得,整理得,数列是等比数列,通项公式为.(2)由题得,,前n项和,,两式相减可得,整理化简得.【点睛】本题考查等比数列的性质,以及用错位相减法求数列的前n项和,对计算能力有一定要求。18、乙船应朝北偏东约的方向沿直线前往处救援.【解析】

根据题意,求得,利用余弦定理求得的长,在中利用正弦定理求得,根据题目所给参考数据求得乙船行驶方向.【详解】解:由已知,则,在中,由余弦定理,得,∴海里.在中,由正弦定理,有,解得,则,故乙船应朝北偏东约的方向沿直线前往处救援.【点睛】本小题主要考查解三角形在实际生活中的应用,考查正弦定理、余弦定理解三角形,属于基础题.19、(1);(2)见解析;(3)见解析.【解析】

(1)利用正弦定理求出的值,然后利用余弦定理求出的值;(2)由余弦定理得出可得证;(3)分类讨论判断三角形的形状与两边、的关系,以及与直径的大小的比较,分类讨论即可.【详解】(1)由正弦定理得,所以,由余弦定理得,化简得.,解得;(2)由于为钝角,则,由于,,得证;(3)①当或时,所求不存在;②当且时,,所求有且只有一个,此时;③当时,都是锐角,,存在且只有一个,;④当时,所求存在两个,总是锐角,可以是钝角也可以是锐角,因此所求存在,当时,,,,,;当时,,,,,.【点睛】本题综合考查了三角形形状的判断,考查了解三角形、三角形的外接圆等知识,综合性较强,尤其是第三问需要根据、两边以及直径的大小关系确定三角形的形状,再在这种情况下求第三边的表达式,本解法主观性较强,难度较大.20、(1)见解析(2)【解析】

(1)先证明平面,再证明平面平面;(2)连接,,则截面右侧的几何体为四棱锥和三棱锥,再求出每一部分的体积得解.【详解】(1)证明:在正方体中,连接.因为,分别是,的中点,所以.因为平面,平面,所以.因为,所以平面,平面,所以,同理,因为,所以平面,因为平面,所以平面平面;(2)连接,,则截面右侧的几何体为四棱锥和三棱锥,设正方体棱长为1,所以,所以平面将正方体分成的两部分体积

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论