




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于外源性知识辅助的自动问答技术研究基于外源性知识辅助的自动问答技术研究
摘要:自动问答技术是人工智能领域的一个热门研究方向,其目标是构建一个智能问答系统,通过自然语言实现人机对话。本文针对当前自动问答系统存在的问题,提出了基于外源性知识辅助的自动问答技术研究方案。该方案通过引入外源性知识,增强自动问答系统的知识储备,提升答案准确率和覆盖率。具体来说,本文研究了知识表示方法、知识抽取技术、知识融合方法等关键技术,以及如何将这些技术应用于实际的自动问答系统中。
本文首先介绍了自动问答技术的发展历程和研究现状,指出现有自动问答系统在面对复杂多变的实际应用场景时,普遍存在着知识不充分、答案不准确、覆盖率低等问题。接着,本文详细介绍了外源性知识的概念和类型,包括通用知识库、领域专业知识库和社交媒体等,为后续的研究做出了铺垫。
在所引入的外源性知识的基础上,本文分别研究了知识表示、知识抽取和知识融合等核心技术。其中,知识表示研究了二元组、三元组、本体等多种表示方法,并对其进行了比较和评价,得出了使用本体表示知识最为合适的结论。知识抽取则研究了基于规则、基于分类、基于聚类等多种抽取技术,并提出了一种基于深度学习的知识抽取方法,取得了比较好的效果。知识融合方面,本文提出了一种基于置信度的知识融合方法,通过计算各个知识来源的置信度,动态调节各个知识片段对总答案的贡献比例,提高答案的准确率和覆盖率。
最后,本文以某汽车网站的自动问答系统为例,验证了所提出的基于外源性知识辅助的自动问答技术研究方案的有效性和实用性。实验结果表明,引入外源性知识后,该系统的答案准确率从81.5%提升到了92.8%,覆盖率也有了显著提升。因此,本文的研究成果对于提升当前自动问答系统的能力具有重要的实际应用价值。
关键词:自动问答技术;外源性知识;知识表示;知识抽取;知识融Abstract:
Asanimportantbranchofnaturallanguageprocessing,automaticquestionansweringtechnologyhasbeenwidelystudiedandapplied.However,theaccuracyandcoverageofthecurrentautomaticquestionansweringsystemstillneedtobeimproved.Inordertosolvethisproblem,thispaperproposesaresearchschemeofautomaticquestionansweringtechnologybasedonexternalknowledge,whichintroducesexternalknowledgeintotheautomaticquestionansweringsystemtoenhanceitsabilitytoanswerquestionsaccuratelyandcomprehensively.
Firstly,thispaperanalyzestheexistingproblemsintheautomaticquestionansweringsystem,suchaslowaccuracy,inaccurateanswers,andlowcoverage.Then,theconceptandtypesofexternalknowledgeareintroduced,includinggeneralknowledgebases,domain-specificknowledgebases,andsocialmedia,layingafoundationforsubsequentresearch.
Basedontheintroducedexternalknowledge,thispaperstudiesthecoretechnologiesofknowledgerepresentation,knowledgeextraction,andknowledgefusion.Amongthem,knowledgerepresentationstudiesmultiplerepresentationmethodssuchasbinarytuples,ternarytuples,andontologies,andcomparesandevaluatesthemtoconcludethatontologyisthemostsuitablemethodforrepresentingknowledge.Knowledgeextractionstudiesmultipleextractiontechnologiessuchasrule-based,classification-based,andclustering-basedmethods,andproposesadeeplearning-basedknowledgeextractionmethod,whichachievedgoodresults.Intermsofknowledgefusion,thispaperproposesaconfidence-basedknowledgefusionmethod,whichdynamicallyadjuststhecontributionofeachknowledgefragmenttotheoverallanswerbycalculatingtheconfidenceofeachknowledgesource,therebyimprovingtheaccuracyandcoverageoftheanswer.
Finally,thispaperverifiestheeffectivenessandpracticalityoftheproposedresearchschemeofautomaticquestionansweringtechnologybasedonexternalknowledge,usingaself-developedautomaticquestionansweringsystemofacarwebsiteasanexample.Experimentalresultsshowthatafterintroducingexternalknowledge,theaccuracyofthesystem'sanswershasincreasedfrom81.5%to92.8%,andthecoveragehasalsosignificantlyincreased.Therefore,theresearchresultsofthispaperhaveimportantpracticalapplicationvalueinimprovingthecurrentautomaticquestionansweringsystem.
Keywords:automaticquestionansweringtechnology;externalknowledge;knowledgerepresentation;knowledgeextraction;knowledgefusionInadditiontoimprovingtheaccuracyandcoverageofautomaticquestionansweringsystemsthroughtheintroductionofexternalknowledge,researchinthisfieldhasalsoexploredvariousothermethodsandtechniques.
Oneapproachistoincorporatetheuseofnaturallanguageprocessing(NLP)techniques.NLPisasubfieldofartificialintelligencethatfocusesonthedevelopmentofalgorithmsandmodelsthatallowcomputerstounderstandandgeneratehumanlanguage.ByapplyingNLPtechniques,automaticquestionansweringsystemscanimprovetheirabilitytointerpretandrespondtonaturallanguagequeries.
Anotherapproachistoutilizemachinelearningalgorithms.Machinelearningisabranchofartificialintelligencethatfocusesonthedevelopmentofalgorithmsthatallowcomputerstolearnfromdata,withoutbeingexplicitlyprogrammed.Throughtheuseofmachinelearningalgorithms,automaticquestionansweringsystemscanimprovetheirabilitytorecognizepatternsindata,andgeneratemoreaccurateandrelevantanswerstouserqueries.
Furthermore,researchinthisfieldhasalsoexploredtheuseofknowledgegraphs,whicharelargenetworksofinterconnecteddatathatrepresentknowledgeaboutaparticulardomain.Byusingknowledgegraphs,automaticquestionansweringsystemscanaccessvastamountsofstructureddata,whichcanbeusedtogeneratemoreaccurateandrelevantanswerstouserqueries.
Inconclusion,automaticquestionansweringtechnologyhasmadesignificantadvancesoverthepastfewdecades,drivenbytheuseofexternalknowledge,naturallanguageprocessing,machinelearning,andknowledgegraphs.Theseadvanceshaveledtosignificantimprovementsintheaccuracyandcoverageofautomaticquestionansweringsystems,andhaveimportantpracticalapplicationvalueinawiderangeoffields,includingeducation,healthcare,finance,andmore.Itisexpectedthatfurtherresearchinthisfieldwillcontinuetopushtheboundariesofwhatispossible,andleadtoevenmoreadvancedandpowerfulautomaticquestionansweringsystemsinthefutureOneareawhereautomaticquestionansweringsystemshaveshowngreatpotentialisinthefieldofeducation.Withtheincreasingpopularityofonlinelearningande-learningplatforms,thereisagrowingneedforsystemsthatcanprovideaccurateandtimelyanswerstostudents'questions.Thisisparticularlyimportantinsubjectssuchasscienceandmath,wherestudentsmaystruggletounderstandcomplexconceptswithouttheguidanceofaknowledgeableinstructor.
Automaticquestionansweringsystemscanhelpbridgethisgapbyprovidingstudentswithinstantaccesstoreliableandaccurateinformation,allowingthemtoquicklyandeasilyunderstandkeyconceptsandovercomelearningbarriers.Thiscanbeespeciallyusefulinsituationswherestudentsmaynothaveaccesstoateacherortutor,suchasinremoteareasorforstudentswhoarestudyingindependently.
Inthehealthcareindustry,automaticquestionansweringsystemscanhelpmedicalprofessionalsquicklyandaccuratelydiagnoseandtreatpatients.Forexample,asystemthatisabletoautomaticallyanswerquestionsaboutsymptomsanddiagnosescansavevaluabletimefordoctorsandnurses,allowingthemtofocusonprovidingthebestpossiblecarefortheirpatients.
Inthefinancialindustry,automaticquestionansweringsystemscanhelpfinancialadvisorsandbrokersprovidebetteradvicetotheirclients.Byanalyzingvastamountsoffinancialdataandprovidingtimelyanswerstocomplexfinancialquestions,thesesystemscanhelpinvestorsmakebetterdecisionsandmaximizetheirreturns.Theycanalsohelpreducetheriskoffinancialfraudandothertypesoffinancialcrime,whichisagrowingconcernformanyfinancialinstitutions.
Overall,automaticquestionansweringsystemshavethepotentialtorevolutionizeawiderangeofindustriesandfields,providingfaster,m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小儿腹泻护理诊断及措施
- 提高混合动力系统能量回收效率
- ppp代理合同标准文本
- 做门合同标准文本
- 教育大会心得体会(8篇)
- 110联网报警合同标准文本
- 公司转让代销合同标准文本
- 心血管患者操作流程
- 买宠物猫合同标准文本
- 2025年合同违约情形下合同效力分析与应对策略
- 企业发展能力分析 -以中国石化集团公司为例-企业发展-毕业论文
- 英语阅读教学【讲座课件】
- FANUC伺服报警系统介绍和维修要点
- 学生会组织结构图及具体职责
- 初中物理中考复习备考策略共53页课件
- DL∕T 5544-2018 架空输电线路锚杆基础设计规程
- 高层建筑核心筒设计实例分析(共67页)
- 陶瓷砖购销合同模板直接用
- 电机学同步电机-全套课件
- 基于AT89S52单片机的自动干手器的设计与实现
- 《特种设备目录》(2022年第114号)
评论
0/150
提交评论