2022-2023学年湖南省衡阳二十六中数学高一第二学期期末统考试题含解析_第1页
2022-2023学年湖南省衡阳二十六中数学高一第二学期期末统考试题含解析_第2页
2022-2023学年湖南省衡阳二十六中数学高一第二学期期末统考试题含解析_第3页
2022-2023学年湖南省衡阳二十六中数学高一第二学期期末统考试题含解析_第4页
2022-2023学年湖南省衡阳二十六中数学高一第二学期期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.把一块长是10,宽是8,高是6的长方形木料削成一个体积最大的球,这个球的体积等于()A. B.480 C. D.2.如图,正方形中,分别是的中点,若则()A. B. C. D.3.在中,角,,所对的边分别是,,,,,,则()A.或 B.C. D.4.设,,在,,…,中,正数的个数是()A.15 B.16 C.18 D.205.在长方体中,,,则异面直线与所成角的余弦值为()A. B. C. D.6.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A. B. C. D.7.已知m个数的平均数为a,n个数的平均数为b,则这个数的平均数为()A. B. C. D.8.某校有高一学生人,高二学生人,高三学生人,现教育局督导组欲用分层抽样的方法抽取名学生进行问卷调查,则下列判断正确的是()A.高一学生被抽到的可能性最大 B.高二学生被抽到的可能性最大C.高三学生被抽到的可能性最大 D.每位学生被抽到的可能性相等9.中,分别是内角的对边,且,,则等于()A. B. C. D.10.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在矩形中,,现将矩形沿对角线折起,则所得三棱锥外接球的体积是________.12.如果是奇函数,则=.13.读程序,完成下列题目:程序如图:(1)若执行程序时,没有执行语句,则输入的的范围是_______;(2)若执行结果,输入的的值可能是___.14.已知函数分别由下表给出:123211123321则当时,_____________.15.福利彩票“双色球”中红色球由编号为01,02,…,33的33个个体组成,某彩民利用下面的随机数表(下表是随机数表的第一行和第二行)选取6个红色球,选取方法是从随机数表中第1行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第3个红色球的编号为______.4954435482173793232887352056438426349164572455068877047447672176335025839212067616.某公司调查了商品的广告投入费用(万元)与销售利润(万元)的统计数据,如下表:广告费用(万元)销售利润(万元)由表中的数据得线性回归方程为,则当时,销售利润的估值为___.(其中:)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和为,且满足(1)求数列的通项公式;(2)设,令,求18.如图,在直三棱柱中,,,是棱的中点.(1)求证:;(2)求证:.19.设为数列的前项和,.(1)求证:数列是等比数列;(2)求证:.20.某班在一次个人投篮比赛中,记录了在规定时间内投进个球的人数分布情况:进球数(个)012345投进个球的人数(人)1272其中和对应的数据不小心丢失了,已知进球3个或3个以上,人均投进4个球;进球5个或5个以下,人均投进2.5个球.(1)投进3个球和4个球的分别有多少人?(2)从进球数为3,4,5的所有人中任取2人,求这2人进球数之和为8的概率.21.已知函数.(1)求的最小正周期和最大值;(2)求在上的单调区间

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由题意知,此球是棱长为6的正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为6,再由球的体积公式求解即可.【详解】解:由已知可得球的直径为6,故半径为3,其体积是,故选:.【点睛】本题考查长方体内切球的几何特征,以及球的体积公式,属于基础题.2、D【解析】试题分析:取向量作为一组基底,则有,所以又,所以,即.3、C【解析】

将已知代入正弦定理可得,根据,由三角形中大边对大角可得:,即可求得.【详解】解:,,由正弦定理得:故选C.【点睛】本题考查了正弦定理、三角形的边角大小关系,考查了推理能力与计算能力.4、D【解析】

根据数列的通项公式可判断出数列的正负,然后分析的正负,再由的正负即可确定出,,…,中正数的个数.【详解】当时,,当时,,因为,所以,因为,,所以取等号时,所以均为正,又因为,所以均为正,所以正数的个数是:.故选:D.【点睛】本题考查数列与函数综合应用,着重考查了推理判断能力,难度较难.对于数列各项和的正负,可通过数列本身的单调性周期性进行判断,从而为判断各项和的正负做铺垫.5、C【解析】

连接,交于,取的中点,连接、,可以证明是异面直线与所成角,利用余弦定理可求其余弦值.【详解】连接,交于,取的中点,连接.由长方体可得四边形为矩形,所以为的中点,因为为的中点,所以,所以或其补角是异面直线与所成角.在直角三角形中,则,,所以.在直角三角形中,,在中,,故选C.【点睛】空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.6、B【解析】由三视图可知,该几何体是一个棱长为的正方体挖去一个圆锥的组合体,正方体体积为,圆锥体积为几何体的体积为,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.7、D【解析】

根据平均数的定义求解.【详解】两组数的总数为:则这个数的平均数为:故选:D【点睛】本题主要考查了平均数的定义,还考查了运算求解能力,属于基础题.8、D【解析】

根据分层抽样是等可能的选出正确答案.【详解】由于分层抽样是等可能的,所以每位学生被抽到的可能性相等,故选D.【点睛】本小题主要考查随机抽样的公平性,考查分层抽样的知识,属于基础题.9、D【解析】试题分析:由已知得,解得(舍)或,又因为,所以,由正弦定理得.考点:1、倍角公式;2、正弦定理.10、B【解析】

首先根据两点都在角的终边上,得到,利用,利用倍角公式以及余弦函数的定义式,求得,从而得到,再结合,从而得到,从而确定选项.【详解】由三点共线,从而得到,因为,解得,即,所以,故选B.【点睛】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

取的中点,连接,三棱锥外接球的半径再计算体积.【详解】如图,取的中点,连接.由题意可得,则所得三棱锥外接球的半径,其体积为.故答案为【点睛】本题考查了三棱锥的外切球体积,计算是解题的关键.12、-2【解析】试题分析:∵,∴,∴,∴=-2考点:本题考查了三角函数的性质点评:对于定义域为R的奇函数恒有f(0)=0.利用此结论可解决此类问题13、2【解析】

(1)不执行语句,说明不满足条件,,从而得;(2)执行程序,有当时,,只有,.【详解】(1)不执行语句,说明不满足条件,,故有.(2)当时,,只有,.故答案为:(1)(2);【点睛】本题主要考察程序语言,考查对简单程序语言的阅读理解,属于基础题.14、3【解析】

根据已知,用换元法,从外层求到里层,即可求解.【详解】令.故答案为:.【点睛】本题考查函数的表示,考查复合函数值求参数,换元法是解题的关键,属于基础题.15、05【解析】

根据给定的随机数表的读取规则,从第一行第6、7列开始,两个数字一组,从左向右读取,重复的或超出编号范围的跳过,即可.【详解】根据随机数表,排除超过33及重复的编号,第一个编号为21,第二个编号为32,第三个编号05,故选出来的第3个红色球的编号为05.【点睛】本题主要考查了简单随机抽样中的随机数表法,属于容易题.16、12.2【解析】

先求出,的平均数,再由题中所给公式计算出和,进而得出线性回归方程,将代入,即可求出结果.【详解】由题中数据可得:,,所以,所以,故回归直线方程为,所以当时,【点睛】本题主要考查线性回归方程,需要考生掌握住最小二乘法求与,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

试题分析:(1)利用得到相邻两项的关系,把问题转化为等比数列问题;(2)利用裂项相消法求和.试题解析:(1)由,得得∴是等比数列,且公比为(2)由(1)及得,18、(1)见详解;(2)见详解.【解析】

(1)连接AC1,设AC1∩A1C=O,连接OD,可求O为AC1的中点,D是棱AB的中点,利用中位线的性质可证OD∥BC1,根据线面平行的判断定理即可证明BC1∥平面A1CD.(2)由(1)可证平行四边形ACC1A1是菱形,由其性质可得AC1⊥A1C,利用线面垂直的性质可证AB⊥AA1,根据AB⊥AC,利用线面垂直的判定定理可证AB⊥平面ACC1A1,利用线面垂直的性质可证AB⊥A1C,又AC1⊥A1C,根据线面垂直的判定定理可证A1C⊥平面ABC1,利用线面垂直的性质即可证明BC1⊥A1C.【详解】(1)连接AC1,设AC1∩A1C=O,连接OD,在直三棱柱ABC﹣A1B1C1中,侧面ACC1A1是平行四边形,所以:O为AC1的中点,又因为:D是棱AB的中点,所以:OD∥BC1,又因为:BC1⊄平面A1CD,OD⊂平面A1CD,所以:BC1∥平面A1CD.(2)由(1)可知:侧面ACC1A1是平行四边形,因为:AC=AA1,所以:平行四边形ACC1A1是菱形,所以:AC1⊥A1C,在直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,因为:AB⊂平面ABC,所以:AB⊥AA1,又因为:AB⊥AC,AC∩AA1=A,AC⊂平面ACC1A1,AA1⊂平面ACC1A1,所以:AB⊥平面ACC1A1,因为:A1C⊂平面ACC1A1,所以:AB⊥A1C,又因为:AC1⊥A1C,AB∩AC1=A,AB⊂平面ABC1,AC1⊂平面ABC1,所以:A1C⊥平面ABC1,因为:BC1⊂平面ABC1,所以:BC1⊥A1C.【点睛】本题主要考查了线面平行的判定,线面垂直的性质,线面垂直的判定,考查了空间想象能力和推理论证能力,属于中档题.19、(1)见解析;(2)见解析.【解析】

(1)令,由求出的值,再令,由得,将两式相减并整理得,计算出为非零常数可证明出数列为等比数列;(2)由(1)得出,可得出,利用放缩法得出,利用等比数列求和公式分别求出数列和的前项和,从而可证明出所证不等式成立.【详解】(1)当时,,解得;当时,由得,上述两式相减得,整理得.则,且.所以,数列是首项为,公比为的等比数列;(2)由(1)可知,则.因为,所以.又因为,所以.综上,.【点睛】本题考查利用前项和求数列通项,考查等比数列的定义以及放缩法证明数列不等式,解题时要根据数列递推公式或通项公式的结构选择合适的方法进行求解,考查分析问题和解决问题的能力,属于中等题.20、(1)投进3个球和4个球的分别有2人和2人;(2).【解析】

(1)设投进3个球和4个球的分别有,人,则,解方程组即得解.(2)利用古典概型的概率求这2人进球数之和为8的概率.【详解】解:(1)设投进3个球和4个球的分别有,人,则解得.故投进3个球和4个球的分别有2人和2人.(2)若要使进球数之和为8,则1人投进3球,另1人投进5球或2人都各投进4球.记投进3球的2人为,;投进4球的2人为,;投进5球的2人为,.则从这6人中任选2人的所有可能事件为:,,,,,,,,,,,,,,.共15种.其中进球数之和为8的是,,,,,有5种.所以这2人进球数之和为8的概率为.【点睛】本题主要考查平均数的计算

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论